• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
    • Software-verification
    • Math
      • 100-theorems
      • Arithmetic
      • Bit-vectors
        • Sparseint
          • Sparseint-impl
            • Sparseint$-binary-bitop-width
            • Sparseint$-plus-width
            • Sparseint$-binary-bitop-offset
            • Sparseint$-binary-bitop-int-width
            • Sparseint$-plus-int-width
            • Sum-with-cin
            • Sparseint$-plus-offset
            • Sparseint$-binary-bitop-int
            • Sparseint$-finalize-concat
            • Sparseint$-plus-int
            • Sparseint$-binary-bittest-width
            • Sparseint$-binary-bittest-int-width
            • Sparseint$-trailing-0-count-width
            • Sparseint$-height
            • Int-to-sparseint$-rec
            • Carry-out
            • Sparseint$-compare-width
            • Sparseint$-binary-bittest-offset
            • Sparseint$-equal-width
            • Sparseint$-binary-bittest-int
            • Sparseint$-compare-int-width
            • Sparseint$-bitcount-width
            • Sparseint$-unary-bittest-width
            • Sparseint$-rightshift-rec
            • Sparseint$-equal-int-width
            • Sparseint$-trailing-0-count-rec
            • Sparseint$-unary-bitop
            • Sparseint$-concatenate
            • Sparseint$-length-width-rec
            • Sparseint$-sign-ext
            • Sparseint$-binary-bitop
            • Binary-bitop
            • Sparseint$-compare-offset
            • Sparseint$-unary-bittest-offset
            • Sparseint$-equal-offset
            • Sparseint$-truncate
            • Sparseint$-mergeable-leaves-p
            • Carry-out-bit
            • Sparseint$-truncate-height
            • Sparseint$-compare-int
            • Sparseint$-binary-bittest
            • Sparseint$-equal-int
            • Sparseint$-rightshift
            • Sparseint$-leaves-mergeable-p
            • Sparseint$-plus
            • Unary-bitop
            • Sparseint$-bitcount-rec
            • Within-1
              • Sparseint$
              • Binary-bitop-cofactor2
              • Binary-bitop-cofactor1
              • Sparseint$-compare
              • Sparseint$-unary-bittest
              • Sparseint$-height-correct-exec
              • Sparseint$-equal
              • Sparseint$-bitnot
              • Sparseint$-unary-minus
              • Sparseint$-bit
              • Int-to-sparseint$
              • Binary-bittest
              • Sparseint$-length-rec
              • Sparseint$-val
              • Binary-bitop-swap
              • Compare
              • Sparseint$-real-height
              • Sparseint$-height-correctp
              • Sparseint$-length
            • Sparseint-p
            • Sparseint-binary-bittest
            • Sparseint-concatenate
            • Sparseint-binary-bitop
            • Sparseint-bitite
            • Sparseint-fix
            • Sparseint$-binary-minus
            • Sparseint-trailing-1-count-from
            • Sparseint-trailing-0-count-from
            • Sparseint-equal
            • Sparseint-test-bitorc2
            • Sparseint-test-bitorc1
            • Sparseint-test-bitnand
            • Sparseint-test-bitandc2
            • Sparseint-test-bitandc1
            • Sparseint-test-bitand
            • Sparseint-rightshift
            • Sparseint-bitcount-from
            • Sparseint-test-bitxor
            • Sparseint-test-bitor
            • Sparseint-test-bitnor
            • Sparseint-test-biteqv
            • Sparseint-compare
            • Sparseint-binary-minus
            • Sparseint-sign-ext
            • Sparseint-plus
            • Sparseint-bitandc2
            • Sparseint-bitandc1
            • Sparseint-bitand
            • Sparseint$-leaf-bitlimit
            • Sparseint-bitxor
            • Sparseint-bitorc2
            • Sparseint-bitorc1
            • Sparseint-bitor
            • Sparseint-bitnor
            • Sparseint-bitnand
            • Sparseint-biteqv
            • Sparseint-ash
            • Sparseint-<
            • Sparseint-bit
            • Sparseint-trailing-1-count
            • Sparseint-trailing-0-count
            • Sparseint-unary-minus
            • Sparseint-length
            • Sparseint-bitnot
            • Sparseint-bitcount
            • Int-to-sparseint
            • Sparseint-val
          • Bitops
          • Bv
          • Ihs
          • Rtl
        • Algebra
      • Testing-utilities
    • Sparseint-impl

    Within-1

    Signature
    (within-1 x y) → *
    Arguments
    x — Guard (natp x).
    y — Guard (natp y).

    Definitions and Theorems

    Function: within-1

    (defun within-1 (x y)
      (declare (xargs :guard (and (natp x) (natp y))))
      (let ((__function__ 'within-1))
        (declare (ignorable __function__))
        (<= (abs (- (lnfix x) (lnfix y))) 1)))

    Theorem: within-1-when-equal

    (defthm within-1-when-equal
      (within-1 x x))

    Theorem: within-1-when-y-greater

    (defthm within-1-when-y-greater
      (implies (equal (+ 1 (nfix x)) (nfix y))
               (within-1 x y)))

    Theorem: within-1-when-x-greater

    (defthm within-1-when-x-greater
      (implies (equal (+ 1 (nfix y)) (nfix x))
               (within-1 x y)))

    Theorem: within-1-commutative

    (defthm within-1-commutative
      (implies (within-1 y x) (within-1 x y)))

    Theorem: <-when-within-1

    (defthm <-when-within-1
      (implies (and (within-1 x y) (natp x) (natp y))
               (equal (< x y) (equal (+ 1 x) y))))

    Theorem: >-when-within-1

    (defthm >-when-within-1
      (implies (and (within-1 x y) (natp x) (natp y))
               (equal (< y x) (equal (+ 1 y) x))))

    Theorem: within-1-when-<

    (defthm within-1-when-<
      (implies (< (nfix x) (nfix y))
               (equal (within-1 x y)
                      (equal (nfix y) (+ 1 (nfix x))))))

    Theorem: within-1-when->

    (defthm within-1-when->
      (implies (> (nfix x) (nfix y))
               (equal (within-1 x y)
                      (equal (nfix x) (+ 1 (nfix y))))))

    Theorem: within-1-of-nfix-x

    (defthm within-1-of-nfix-x
      (equal (within-1 (nfix x) y)
             (within-1 x y)))

    Theorem: within-1-nat-equiv-congruence-on-x

    (defthm within-1-nat-equiv-congruence-on-x
      (implies (nat-equiv x x-equiv)
               (equal (within-1 x y)
                      (within-1 x-equiv y)))
      :rule-classes :congruence)

    Theorem: within-1-of-nfix-y

    (defthm within-1-of-nfix-y
      (equal (within-1 x (nfix y))
             (within-1 x y)))

    Theorem: within-1-nat-equiv-congruence-on-y

    (defthm within-1-nat-equiv-congruence-on-y
      (implies (nat-equiv y y-equiv)
               (equal (within-1 x y)
                      (within-1 x y-equiv)))
      :rule-classes :congruence)