• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
      • Std/lists
        • Std/lists/abstract
        • Rev
        • Defsort
        • List-fix
        • Std/lists/nth
        • Hons-remove-duplicates
        • Std/lists/update-nth
        • Set-equiv
        • Duplicity
        • Prefixp
        • Std/lists/take
        • Std/lists/intersection$
        • Nats-equiv
        • Repeat
        • Index-of
        • All-equalp
        • Sublistp
        • Std/lists/nthcdr
        • Listpos
        • List-equiv
        • Final-cdr
          • Std/lists/append
          • Std/lists/remove
          • Subseq-list
          • Rcons
          • Std/lists/revappend
          • Std/lists/remove-duplicates-equal
          • Std/lists/reverse
          • Std/lists/last
          • Std/lists/resize-list
          • Flatten
          • Suffixp
          • Std/lists/butlast
          • Std/lists/set-difference
          • Std/lists/len
          • Std/lists/intersectp
          • Std/lists/true-listp
          • Intersectp-witness
          • Subsetp-witness
          • Std/lists/remove1-equal
          • Rest-n
          • First-n
          • Std/lists/union
          • Std/lists/add-to-set
          • Append-without-guard
          • Std/lists/subsetp
          • Std/lists/member
        • Std/alists
        • Obags
        • Std/util
        • Std/strings
        • Std/osets
        • Std/io
        • Std/basic
        • Std/system
        • Std/typed-lists
        • Std/bitsets
        • Std/testing
        • Std/typed-alists
        • Std/stobjs
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Std/lists

    Final-cdr

    (final-cdr x) returns the atom in the "cdr-most branch" of x.

    For example, (final-cdr '(a b c . d)) is d.

    This function is related to list-fix. It is occasionally useful for strengthening rewrite rules by removing hypotheses.

    Definitions and Theorems

    Function: final-cdr

    (defun final-cdr (x)
      (declare (xargs :guard t))
      (if (atom x) x (final-cdr (cdr x))))

    Theorem: final-cdr-when-atom

    (defthm final-cdr-when-atom
      (implies (atom x)
               (equal (final-cdr x) x)))

    Theorem: final-cdr-of-cons

    (defthm final-cdr-of-cons
      (equal (final-cdr (cons a x))
             (final-cdr x)))

    Theorem: final-cdr-when-true-listp

    (defthm final-cdr-when-true-listp
      (implies (true-listp x)
               (equal (final-cdr x) nil)))

    Theorem: equal-final-cdr-nil

    (defthm equal-final-cdr-nil
      (equal (equal (final-cdr x) nil)
             (true-listp x)))

    Theorem: equal-of-final-cdr-and-self

    (defthm equal-of-final-cdr-and-self
      (equal (equal x (final-cdr x))
             (atom x)))

    Theorem: final-cdr-of-append

    (defthm final-cdr-of-append
      (equal (final-cdr (append x y))
             (final-cdr y)))

    Theorem: final-cdr-of-revappend

    (defthm final-cdr-of-revappend
      (equal (final-cdr (revappend x y))
             (final-cdr y)))

    Theorem: final-cdr-of-union-equal

    (defthm final-cdr-of-union-equal
      (equal (final-cdr (union-equal x y))
             (final-cdr y)))

    Theorem: final-cdr-of-acons

    (defthm final-cdr-of-acons
      (equal (final-cdr (acons key val alist))
             (final-cdr alist)))

    Theorem: final-cdr-of-hons-acons

    (defthm final-cdr-of-hons-acons
      (equal (final-cdr (hons-acons key val alist))
             (final-cdr alist)))

    Theorem: final-cdr-of-hons-shrink-alist

    (defthm final-cdr-of-hons-shrink-alist
      (equal (final-cdr (hons-shrink-alist alist ans))
             (final-cdr ans)))

    Theorem: final-cdr-of-add-to-set-equal

    (defthm final-cdr-of-add-to-set-equal
      (equal (final-cdr (add-to-set-equal a x))
             (final-cdr x)))

    Theorem: final-cdr-of-last

    (defthm final-cdr-of-last
      (equal (final-cdr (last x))
             (final-cdr x)))

    Theorem: final-cdr-of-nthcdr

    (defthm final-cdr-of-nthcdr
      (equal (final-cdr (nthcdr n x))
             (if (<= (nfix n) (len x))
                 (final-cdr x)
               nil)))

    Theorem: append-self-onto-final-cdr

    (defthm append-self-onto-final-cdr
      (equal (append x (final-cdr x)) x))