• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
      • Std/lists
      • Std/alists
      • Obags
      • Std/util
      • Std/strings
      • Std/osets
      • Std/io
      • Std/basic
        • Maybe-stringp
        • Maybe-natp
        • Two-nats-measure
        • Impossible
        • Bytep
        • Nat-list-measure
        • Maybe-posp
        • Nibblep
        • Organize-symbols-by-pkg
        • Organize-symbols-by-name
        • Lnfix
        • Good-valuep
        • Streqv
        • Chareqv
        • Symbol-package-name-non-cl
        • Arith-equivs
          • Nat-equiv
            • Nats-equiv
            • Bit->bool
            • Bit-equiv
            • Int-equiv
            • Negp
            • Bool->bit
          • Induction-schemes
          • Maybe-integerp
          • Char-fix
          • Pos-fix
          • Symbol-package-name-lst
          • Mbt$
          • Maybe-bitp
          • Good-pseudo-termp
          • Str-fix
          • Maybe-string-fix
          • Nonkeyword-listp
          • Lifix
          • Bfix
          • Std/basic/if*
          • Impliez
          • Tuplep
          • Std/basic/intern-in-package-of-symbol
          • Lbfix
          • Std/basic/symbol-name-lst
          • True
          • Std/basic/rfix
          • Std/basic/realfix
          • Std/basic/member-symbol-name
          • Std/basic/fix
          • False
          • Std/basic/nfix
          • Std/basic/ifix
        • Std/system
        • Std/typed-lists
        • Std/bitsets
        • Std/testing
        • Std/typed-alists
        • Std/stobjs
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Std/lists
    • Nat-equiv

    Nats-equiv

    Recognizer for lists that are the same length and that are pairwise equivalent up to nfix.

    Definitions and Theorems

    Function: nats-equiv

    (defun nats-equiv (x y)
      (if (and (atom x) (atom y))
          t
        (and (nat-equiv (car x) (car y))
             (nats-equiv (cdr x) (cdr y)))))

    This is an equivalence relation:

    Theorem: nats-equiv-is-an-equivalence

    (defthm nats-equiv-is-an-equivalence
      (and (booleanp (nats-equiv x y))
           (nats-equiv x x)
           (implies (nats-equiv x y)
                    (nats-equiv y x))
           (implies (and (nats-equiv x y) (nats-equiv y z))
                    (nats-equiv x z)))
      :rule-classes (:equivalence))

    It is also a refinement of list-equiv:

    Theorem: list-equiv-refines-nats-equiv

    (defthm list-equiv-refines-nats-equiv
      (implies (list-equiv x y)
               (nats-equiv x y))
      :rule-classes (:refinement))

    It also enjoys several basic congruences:

    Theorem: nats-equiv-implies-nat-equiv-car-1

    (defthm nats-equiv-implies-nat-equiv-car-1
      (implies (nats-equiv x x-equiv)
               (nat-equiv (car x) (car x-equiv)))
      :rule-classes (:congruence))

    Theorem: nats-equiv-implies-nats-equiv-cdr-1

    (defthm nats-equiv-implies-nats-equiv-cdr-1
      (implies (nats-equiv x x-equiv)
               (nats-equiv (cdr x) (cdr x-equiv)))
      :rule-classes (:congruence))

    Theorem: nats-equiv-implies-nats-equiv-cons-2

    (defthm nats-equiv-implies-nats-equiv-cons-2
      (implies (nats-equiv x x-equiv)
               (nats-equiv (cons a x)
                           (cons a x-equiv)))
      :rule-classes (:congruence))

    Theorem: nats-equiv-of-cons

    (defthm nats-equiv-of-cons
      (equal (nats-equiv (cons a x) z)
             (and (nat-equiv a (car z))
                  (nats-equiv x (cdr z)))))

    Theorem: nats-equiv-implies-nat-equiv-nth-2

    (defthm nats-equiv-implies-nat-equiv-nth-2
      (implies (nats-equiv x x-equiv)
               (nat-equiv (nth n x) (nth n x-equiv)))
      :rule-classes (:congruence))

    Theorem: nats-equiv-implies-nats-equiv-update-nth-3

    (defthm nats-equiv-implies-nats-equiv-update-nth-3
      (implies (nats-equiv x x-equiv)
               (nats-equiv (update-nth n v x)
                           (update-nth n v x-equiv)))
      :rule-classes (:congruence))

    Theorem: nat-equiv-implies-nats-equiv-update-nth-2

    (defthm nat-equiv-implies-nats-equiv-update-nth-2
      (implies (nat-equiv v v-equiv)
               (nats-equiv (update-nth n v x)
                           (update-nth n v-equiv x)))
      :rule-classes (:congruence))

    Theorem: nats-equiv-implies-nats-equiv-append-2

    (defthm nats-equiv-implies-nats-equiv-append-2
      (implies (nats-equiv y y-equiv)
               (nats-equiv (append x y)
                           (append x y-equiv)))
      :rule-classes (:congruence))

    Theorem: nats-equiv-implies-nats-equiv-revappend-2

    (defthm nats-equiv-implies-nats-equiv-revappend-2
      (implies (nats-equiv y y-equiv)
               (nats-equiv (revappend x y)
                           (revappend x y-equiv)))
      :rule-classes (:congruence))

    Theorem: nats-equiv-implies-nats-equiv-take-2

    (defthm nats-equiv-implies-nats-equiv-take-2
      (implies (nats-equiv x x-equiv)
               (nats-equiv (take n x)
                           (take n x-equiv)))
      :rule-classes (:congruence))

    Theorem: nats-equiv-implies-nats-equiv-nthcdr-2

    (defthm nats-equiv-implies-nats-equiv-nthcdr-2
      (implies (nats-equiv x x-equiv)
               (nats-equiv (nthcdr n x)
                           (nthcdr n x-equiv)))
      :rule-classes (:congruence))

    Theorem: nats-equiv-implies-nats-equiv-make-list-ac-3

    (defthm nats-equiv-implies-nats-equiv-make-list-ac-3
      (implies (nats-equiv ac ac-equiv)
               (nats-equiv (make-list-ac n val ac)
                           (make-list-ac n val ac-equiv)))
      :rule-classes (:congruence))

    Theorem: nat-equiv-implies-nats-equiv-replicate-2

    (defthm nat-equiv-implies-nats-equiv-replicate-2
      (implies (nat-equiv x x-equiv)
               (nats-equiv (replicate n x)
                           (replicate n x-equiv)))
      :rule-classes (:congruence))