• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
      • Std/lists
      • Std/alists
      • Obags
      • Std/util
      • Std/strings
      • Std/osets
      • Std/io
      • Std/basic
      • Std/system
      • Std/typed-lists
      • Std/bitsets
      • Std/testing
      • Std/typed-alists
      • Std/stobjs
        • Stobj-updater-independence
          • Range-equal
            • Def-updater-independence-thm
          • Def-1d-arr
          • Defstobj-clone
          • Def-2d-arr
          • Defabsstobj-events
          • Bitarr
          • Natarr
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Stobj-updater-independence

    Range-equal

    Check that a range of entries from two lists are equal.

    Signature
    (range-equal start num x y) → *
    Arguments
    start — Guard (natp start).
    num — Guard (natp num).
    x — Guard (true-listp x).
    y — Guard (true-listp y).

    This is useful for stobj updater independence theorems, e.g.,

    (def-stobj-updater-independence sum-range-of-field2-updater-independence
      (implies (range-equal 0 k (nth 2 new) (nth 2 old))
               (equal (sum-range-of-field2 k new)
                      (sum-range-of-field2 k old))))

    Also see range-nat-equiv, which is similar but checks nat-equiv of corresponding elements instead of equal.

    Definitions and Theorems

    Function: range-equal

    (defun range-equal (start num x y)
      (declare (xargs :guard (and (natp start)
                                  (natp num)
                                  (true-listp x)
                                  (true-listp y))))
      (let ((__function__ 'range-equal))
        (declare (ignorable __function__))
        (if (zp num)
            t
          (and (equal (nth start x) (nth start y))
               (range-equal (1+ (lnfix start))
                            (1- num)
                            x y)))))

    Theorem: range-equal-open

    (defthm range-equal-open
      (implies (not (zp num))
               (equal (range-equal start num x y)
                      (and (equal (nth start x) (nth start y))
                           (range-equal (1+ (lnfix start))
                                        (1- num)
                                        x y)))))

    Theorem: range-equal-of-nfix-start

    (defthm range-equal-of-nfix-start
      (equal (range-equal (nfix start) num x y)
             (range-equal start num x y)))

    Theorem: range-equal-nat-equiv-congruence-on-start

    (defthm range-equal-nat-equiv-congruence-on-start
      (implies (nat-equiv start start-equiv)
               (equal (range-equal start num x y)
                      (range-equal start-equiv num x y)))
      :rule-classes :congruence)

    Theorem: range-equal-of-nfix-num

    (defthm range-equal-of-nfix-num
      (equal (range-equal start (nfix num) x y)
             (range-equal start num x y)))

    Theorem: range-equal-nat-equiv-congruence-on-num

    (defthm range-equal-nat-equiv-congruence-on-num
      (implies (nat-equiv num num-equiv)
               (equal (range-equal start num x y)
                      (range-equal start num-equiv x y)))
      :rule-classes :congruence)

    Theorem: range-equal-of-list-fix-x

    (defthm range-equal-of-list-fix-x
      (equal (range-equal start num (acl2::list-fix x)
                          y)
             (range-equal start num x y)))

    Theorem: range-equal-list-equiv-congruence-on-x

    (defthm range-equal-list-equiv-congruence-on-x
      (implies (acl2::list-equiv x x-equiv)
               (equal (range-equal start num x y)
                      (range-equal start num x-equiv y)))
      :rule-classes :congruence)

    Theorem: range-equal-of-list-fix-y

    (defthm range-equal-of-list-fix-y
      (equal (range-equal start num x (acl2::list-fix y))
             (range-equal start num x y)))

    Theorem: range-equal-list-equiv-congruence-on-y

    (defthm range-equal-list-equiv-congruence-on-y
      (implies (acl2::list-equiv y y-equiv)
               (equal (range-equal start num x y)
                      (range-equal start num x y-equiv)))
      :rule-classes :congruence)

    Theorem: nth-when-range-equal

    (defthm nth-when-range-equal
      (implies (and (range-equal start num x y)
                    (<= (nfix start) (nfix n))
                    (< (nfix n)
                       (+ (nfix start) (nfix num))))
               (equal (nth n x) (nth n y))))

    Theorem: range-equal-self

    (defthm range-equal-self
      (range-equal start num x x))

    Theorem: range-equal-of-update-out-of-range-1

    (defthm range-equal-of-update-out-of-range-1
      (implies (not (and (<= (nfix start) (nfix n))
                         (< (nfix n)
                            (+ (nfix start) (nfix num)))))
               (equal (range-equal start num (update-nth n v x)
                                   y)
                      (range-equal start num x y))))

    Theorem: range-equal-of-update-out-of-range-2

    (defthm range-equal-of-update-out-of-range-2
      (implies (not (and (<= (nfix start) (nfix n))
                         (< (nfix n)
                            (+ (nfix start) (nfix num)))))
               (equal (range-equal start num x (update-nth n v y))
                      (range-equal start num x y))))

    Theorem: range-equal-of-empty

    (defthm range-equal-of-empty
      (range-equal start 0 x y))