• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
      • Std/lists
      • Std/alists
      • Obags
      • Std/util
      • Std/strings
        • Pretty-printing
        • Printtree
        • Base64
        • Charset-p
        • Strtok!
        • Cases
        • Concatenation
        • Html-encoding
        • Character-kinds
        • Substrings
          • Istrpos
          • Strrpos
          • Strpos
          • Collect-syms-with-isubstr
          • Istrprefixp
          • Collect-strs-with-isubstr
          • Iprefixp
            • Strsuffixp
            • Firstn-chars
            • Strprefixp
            • Isubstrp
            • Substrp
          • Strtok
          • Equivalences
          • Url-encoding
          • Lines
          • Explode-implode-equalities
          • Ordering
          • Numbers
          • Pad-trim
          • Coercion
          • Std/strings/digit-to-char
          • Substitution
          • Symbols
        • Std/osets
        • Std/io
        • Std/basic
        • Std/system
        • Std/typed-lists
        • Std/bitsets
        • Std/testing
        • Std/typed-alists
        • Std/stobjs
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Substrings

    Iprefixp

    Case-insensitive character-list prefix test.

    (iprefixp x y) determines whether one character list is a prefix of another, where each character is tested using ichareqv.

    Definitions and Theorems

    Function: iprefixp

    (defun iprefixp (x y)
      (declare (xargs :guard (and (character-listp x)
                                  (character-listp y))))
      (if (consp x)
          (and (consp y)
               (ichareqv (car x) (car y))
               (iprefixp (cdr x) (cdr y)))
        t))

    Theorem: iprefixp-when-not-consp-left

    (defthm iprefixp-when-not-consp-left
      (implies (not (consp x))
               (iprefixp x y)))

    Theorem: iprefixp-of-cons-left

    (defthm iprefixp-of-cons-left
      (equal (iprefixp (cons a x) y)
             (and (consp y)
                  (ichareqv a (car y))
                  (iprefixp x (cdr y)))))

    Theorem: iprefixp-when-not-consp-right

    (defthm iprefixp-when-not-consp-right
      (implies (not (consp y))
               (equal (iprefixp x y) (not (consp x)))))

    Theorem: iprefixp-of-cons-right

    (defthm iprefixp-of-cons-right
      (equal (iprefixp x (cons a y))
             (if (consp x)
                 (and (ichareqv (car x) a)
                      (iprefixp (cdr x) y))
               t)))

    Theorem: iprefixp-of-list-fix-left

    (defthm iprefixp-of-list-fix-left
      (equal (iprefixp (list-fix x) y)
             (iprefixp x y)))

    Theorem: iprefixp-of-list-fix-right

    (defthm iprefixp-of-list-fix-right
      (equal (iprefixp x (list-fix y))
             (iprefixp x y)))

    Theorem: icharlisteqv-implies-equal-iprefixp-1

    (defthm icharlisteqv-implies-equal-iprefixp-1
      (implies (icharlisteqv x x-equiv)
               (equal (iprefixp x y)
                      (iprefixp x-equiv y)))
      :rule-classes (:congruence))

    Theorem: icharlisteqv-implies-equal-iprefixp-2

    (defthm icharlisteqv-implies-equal-iprefixp-2
      (implies (icharlisteqv y y-equiv)
               (equal (iprefixp x y)
                      (iprefixp x y-equiv)))
      :rule-classes (:congruence))

    Theorem: iprefixp-when-prefixp

    (defthm iprefixp-when-prefixp
      (implies (prefixp x y) (iprefixp x y)))