• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
      • Std/lists
      • Std/alists
      • Obags
      • Std/util
      • Std/strings
      • Std/osets
        • Omaps
          • Defomap
          • Update
          • Mapp
          • Assoc
          • Update*
          • Size
          • Keys
          • From-lists
          • Update-induction-on-maps
          • Compatiblep
            • Tail
            • Head
            • Restrict
            • Submap
            • Map
            • Rlookup
            • Emptyp
            • Rlookup*
            • Lookup*
            • Delete*
            • Values
            • In*
            • Lookup
            • Delete
            • Mfix
            • Head-val
            • Head-key
            • Omap-induction2
            • Omap-order-rules
          • All-by-membership
          • Defset
          • In
          • Primitives
          • Subset
          • Mergesort
          • Intersect
          • Union
          • Pick-a-point-subset-strategy
          • Delete
          • Double-containment
          • Difference
          • Cardinality
          • Set
          • Intersectp
        • Std/io
        • Std/basic
        • Std/system
        • Std/typed-lists
        • Std/bitsets
        • Std/testing
        • Std/typed-alists
        • Std/stobjs
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Omaps

    Compatiblep

    Check if two omaps are compatible, in the sense that they map their common keys to the same values.

    Signature
    (compatiblep map1 map2) → yes/no
    Arguments
    map1 — Guard (mapp map1).
    map2 — Guard (mapp map2).
    Returns
    yes/no — Type (booleanp yes/no).

    This definition is not optimal for execution. The compatibility of two omaps can be checked by linearly scanning through them in order. A future version of this operation should have that definition, at least for execution.

    Definitions and Theorems

    Function: compatiblep

    (defun compatiblep (map1 map2)
      (declare (xargs :guard (and (mapp map1) (mapp map2))))
      (let ((__function__ 'compatiblep))
        (declare (ignorable __function__))
        (cond ((emptyp map1) t)
              ((mv-let (key1 val1)
                       (head map1)
                 (let ((pair2 (assoc key1 map2)))
                   (and pair2 (not (equal val1 (cdr pair2))))))
               nil)
              (t (compatiblep (tail map1) map2)))))

    Theorem: booleanp-of-compatiblep

    (defthm booleanp-of-compatiblep
      (b* ((yes/no (compatiblep map1 map2)))
        (booleanp yes/no))
      :rule-classes :rewrite)

    Theorem: compatiblep-when-left-emptyp

    (defthm compatiblep-when-left-emptyp
      (implies (emptyp map1)
               (compatiblep map1 map2)))

    Theorem: compatiblep-when-right-emptyp

    (defthm compatiblep-when-right-emptyp
      (implies (emptyp map2)
               (compatiblep map1 map2)))