• Top
    • Documentation
    • Books
    • Boolean-reasoning
      • Ipasir
      • Aignet
      • Aig
      • Satlink
      • Truth
      • Ubdds
      • Bdd
      • Faig
        • Faig-constructors
        • Faig-onoff-equiv
        • Faig-purebool-p
        • Faig-alist-equiv
        • Faig-equiv
        • Faig-eval
        • Faig-restrict
        • Faig-fix
        • Faig-partial-eval
        • Faig-compose
          • Faig-compose-thms
          • Faig-compose-alist
          • Patbind-faig
          • Faig-constants
        • Bed
        • 4v
      • Projects
      • Debugging
      • Std
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Faig-compose

    Faig-compose-thms

    Basic theorems about faig-compose.

    Definitions and Theorems

    Theorem: faig-eval-of-faig-compose

    (defthm faig-eval-of-faig-compose
      (equal (faig-eval (faig-compose x al1) al2)
             (faig-eval x (aig-eval-alist al1 al2))))

    Theorem: faig-equiv-implies-faig-equiv-faig-compose-1

    (defthm faig-equiv-implies-faig-equiv-faig-compose-1
      (implies (faig-equiv x x-equiv)
               (faig-equiv (faig-compose x al)
                           (faig-compose x-equiv al)))
      :rule-classes (:congruence))

    Theorem: aig-alist-equiv-implies-faig-equiv-faig-compose-2

    (defthm aig-alist-equiv-implies-faig-equiv-faig-compose-2
      (implies (aig-alist-equiv al al-equiv)
               (faig-equiv (faig-compose x al)
                           (faig-compose x al-equiv)))
      :rule-classes (:congruence))

    Theorem: alist-equiv-implies-equal-faig-compose-2

    (defthm alist-equiv-implies-equal-faig-compose-2
      (implies (alist-equiv env env-equiv)
               (equal (faig-compose x env)
                      (faig-compose x env-equiv)))
      :rule-classes (:congruence))