• Top
    • Documentation
    • Books
    • Boolean-reasoning
      • Ipasir
      • Aignet
      • Aig
      • Satlink
        • Sat-solver-options
        • Config-p
        • Logical-story
        • Dimacs
        • Gather-benchmarks
        • Cnf
          • Litp
            • Lit-negate-cond
            • Lit-negate
            • Make-lit
              • Make-lit^
              • Lit-equiv
              • Lit->var
              • Lit->neg
              • Lit-list
              • Maybe-litp
              • Lit-fix
              • Lit-list-list
            • Varp
            • Env$
            • Eval-formula
            • Max-index-formula
            • Max-index-clause
            • Formula-indices
            • Clause-indices
          • Satlink-extra-hook
          • Sat
        • Truth
        • Ubdds
        • Bdd
        • Faig
        • Bed
        • 4v
      • Projects
      • Debugging
      • Std
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Make-lit

    Make-lit^

    Same as make-lit, but with a type declaration that the input variable is 31 bits unsigned.

    Signature
    (make-lit^ var neg) → *
    Arguments
    var — Guard (varp var).
    neg — Guard (bitp neg).

    Definitions and Theorems

    Function: make-lit^$inline

    (defun make-lit^$inline (var neg)
     (declare (type (unsigned-byte 31) var)
              (type bit neg))
     (declare (xargs :guard (and (varp var) (bitp neg))))
     (declare (xargs :guard (unsigned-byte-p 31 var)
                     :split-types t))
     (let ((__function__ 'make-lit^))
      (declare (ignorable __function__))
      (mbe :logic (make-lit var neg)
           :exec (the (unsigned-byte 32)
                      (logior (the (unsigned-byte 32)
                                   (ash (the (unsigned-byte 31) var) 1))
                              (the bit neg))))))

    Theorem: make-lit^$inline-of-var-fix-var

    (defthm make-lit^$inline-of-var-fix-var
      (equal (make-lit^$inline (var-fix var) neg)
             (make-lit^$inline var neg)))

    Theorem: make-lit^$inline-var-equiv-congruence-on-var

    (defthm make-lit^$inline-var-equiv-congruence-on-var
      (implies (var-equiv var var-equiv)
               (equal (make-lit^$inline var neg)
                      (make-lit^$inline var-equiv neg)))
      :rule-classes :congruence)

    Theorem: make-lit^$inline-of-bfix-neg

    (defthm make-lit^$inline-of-bfix-neg
      (equal (make-lit^$inline var (bfix neg))
             (make-lit^$inline var neg)))

    Theorem: make-lit^$inline-bit-equiv-congruence-on-neg

    (defthm make-lit^$inline-bit-equiv-congruence-on-neg
      (implies (bit-equiv neg neg-equiv)
               (equal (make-lit^$inline var neg)
                      (make-lit^$inline var neg-equiv)))
      :rule-classes :congruence)