• Top
    • Documentation
    • Books
    • Boolean-reasoning
      • Ipasir
      • Aignet
      • Aig
      • Satlink
        • Sat-solver-options
        • Config-p
        • Logical-story
        • Dimacs
        • Gather-benchmarks
        • Cnf
          • Litp
            • Lit-negate-cond
            • Lit-negate
              • Lit-negate^
              • Make-lit
              • Lit-equiv
              • Lit->var
              • Lit->neg
              • Lit-list
              • Maybe-litp
              • Lit-fix
              • Lit-list-list
            • Varp
            • Env$
            • Eval-formula
            • Max-index-formula
            • Max-index-clause
            • Formula-indices
            • Clause-indices
          • Satlink-extra-hook
          • Sat
        • Truth
        • Ubdds
        • Bdd
        • Faig
        • Bed
        • 4v
      • Projects
      • Debugging
      • Std
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Lit-negate

    Lit-negate^

    Same as lit-negate, but with a type declaration that the input is 32 bits unsigned.

    Signature
    (lit-negate^ lit) → *
    Arguments
    lit — Guard (litp lit).

    Definitions and Theorems

    Function: lit-negate^$inline

    (defun lit-negate^$inline (lit)
      (declare (type (unsigned-byte 32) lit))
      (declare (xargs :guard (litp lit)))
      (let ((__function__ 'lit-negate^))
        (declare (ignorable __function__))
        (mbe :logic (lit-negate lit)
             :exec (the (unsigned-byte 32)
                        (logxor 1 (the (unsigned-byte 32) lit))))))

    Theorem: lit-negate^$inline-of-lit-fix-lit

    (defthm lit-negate^$inline-of-lit-fix-lit
      (equal (lit-negate^$inline (lit-fix lit))
             (lit-negate^$inline lit)))

    Theorem: lit-negate^$inline-lit-equiv-congruence-on-lit

    (defthm lit-negate^$inline-lit-equiv-congruence-on-lit
      (implies (lit-equiv lit lit-equiv)
               (equal (lit-negate^$inline lit)
                      (lit-negate^$inline lit-equiv)))
      :rule-classes :congruence)