• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Proof-automation
    • Macro-libraries
      • B*
      • Defunc
      • Fty
      • Apt
        • Simplify-defun
        • Isodata
        • Tailrec
        • Schemalg
        • Restrict
        • Expdata
        • Casesplit
        • Simplify-term
        • Simplify-defun-sk
        • Parteval
        • Solve
        • Wrap-output
        • Propagate-iso
        • Simplify
        • Finite-difference
          • Drop-irrelevant-params
          • Copy-function
          • Lift-iso
          • Rename-params
          • Utilities
          • Simplify-term-programmatic
          • Simplify-defun-sk-programmatic
          • Simplify-defun-programmatic
          • Simplify-defun+
          • Common-options
          • Common-concepts
        • Std/util
        • Defdata
        • Defrstobj
        • Seq
        • Match-tree
        • Defrstobj
        • With-supporters
        • Def-partial-measure
        • Template-subst
        • Soft
        • Defthm-domain
        • Event-macros
        • Def-universal-equiv
        • Def-saved-obligs
        • With-supporters-after
        • Definec
        • Sig
        • Outer-local
        • Data-structures
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Apt

    Finite-difference

    This transformation performs finite-differencing, aka incrementalization.

    Usage

    (finite-difference fn
                       term-to-replace
                       rules
                       [:skip-termination bool]     ;; Default: nil
                       [:verify-guards t/nil/auto]  ;; Default: :auto
                       [:guard-hints hints/:auto]   ;; Default: :auto
                       [:new-param-name name]       ;; Default: nil
                       [:expand-lets bool]          ;; Default: t
                       [:extra-rules rules]         ;; Default: nil
                       [:theorem-name name]         ;; Default: nil
                       [:build-wrapper bool]        ;; Default: t
                       [:theorem-disabled bool]     ;; Default: nil
                       [:function-disabled bool]    ;; Default: nil
                       [:new-name sym]              ;; New name to use for the function (if :auto, the transformation generates a name), Default: :auto
                       [:check-guard bool]          ;; Default: nil, whether to check the claimed relationship in the body of the function (may be needed for termination)
                       [:show-only bool]            ;; Default: nil
                       )

    Detailed Description

    Consider a function, F(x) [assume F is unary for this discussion], whose body includes some term, T(x), over the parameter x. It may be the case that T could be calculated incrementally (that is, we can use the current value of T(X) to compute the value of T(x) that will be needed on the next iteration, after x is updated). This may be cheaper than calculating T(x) each time.

    The transformation does the following:

    1. Build a function version of F(x), call it F$1-pre(x,v), that has an additional parameter (call it v) which is always equal to T(x). All recursive calls must be changed pass the updated value of the new V parameter. F$1-pre will compute this for each call by replacing x in T(x) with the actual value of x passed to the recursive call. This establishes the invariant v=T(x) on the recursive calls.
    2. Prove that F$1-pre(x) is equivalent to F$1(x,v). Note that F$1-pre ignores its v parameter (but F$1, built below, will not).
    3. Build F$1 by simplifying the body of F$1-pre, in two ways: 1) Simply use the new v parameter instead of computing T(x). 2) Simplify the update of v passed to each recursive call, using distributed laws provided by the user, to express it in terms of T(x) = v. This is the key incrementalization step.
    4. Prove that F$1(x,v) is equivalent to F$1-pre(x,v) assuming v = T(x).
    5. Build a wrapper function that calls F$1 with thv V parameter initialized to T(x), thus establishing the invariant.
    6. Prove that the wrapper function is equal to the original F.