• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
      • Theories
      • Rule-classes
      • Proof-builder
      • Recursion-and-induction
      • Hons-and-memoization
      • Events
      • Parallelism
      • History
      • Programming
        • Defun
        • Declare
        • System-utilities
        • Stobj
        • State
        • Mutual-recursion
        • Memoize
        • Mbe
        • Io
        • Defpkg
        • Apply$
        • Loop$
        • Programming-with-state
        • Arrays
        • Characters
        • Time$
        • Defmacro
        • Loop$-primer
        • Fast-alists
        • Defconst
        • Evaluation
        • Guard
        • Equality-variants
        • Compilation
        • Hons
        • ACL2-built-ins
        • Developers-guide
        • System-attachments
        • Advanced-features
        • Set-check-invariant-risk
        • Numbers
          • Df
          • Unsigned-byte-p
          • Posp
          • Natp
          • <
          • +
          • Bitp
          • Zero-test-idioms
          • Nat-listp
          • Integerp
          • *
          • -
          • Zp
          • Signed-byte-p
          • Logbitp
          • Sharp-f-reader
          • Expt
          • <=
          • Ash
          • Rationalp
          • =
          • Nfix
          • Logand
          • Floor
          • Random$
          • Integer-listp
          • Complex
          • Numbers-introduction
          • Truncate
          • Code-char
          • Char-code
          • Integer-length
            • Bitops/integer-length
              • Ihs/integer-length-lemmas
              • Integer-length*
              • Integer-length-default
            • Zip
            • Logior
            • Sharp-u-reader
            • Mod
            • Unary--
            • Boole$
            • /
            • Logxor
            • Ifix
            • Lognot
            • Integer-range-p
            • Allocate-fixnum-range
            • ACL2-numberp
            • Sharp-d-reader
            • Mod-expt
            • Ceiling
            • Round
            • Logeqv
            • Fix
            • Explode-nonnegative-integer
            • Max
            • Evenp
            • Zerop
            • Abs
            • Nonnegative-integer-quotient
            • Rfix
            • 1+
            • Pos-listp
            • Signum
            • Rem
            • Real/rationalp
            • Rational-listp
            • >=
            • >
            • Logcount
            • ACL2-number-listp
            • /=
            • Unary-/
            • Realfix
            • Complex/complex-rationalp
            • Logtest
            • Logandc1
            • Logorc1
            • Logandc2
            • Denominator
            • 1-
            • Numerator
            • Logorc2
            • The-number
            • Int=
            • Complex-rationalp
            • Min
            • Lognor
            • Zpf
            • Oddp
            • Minusp
            • Lognand
            • Imagpart
            • Conjugate
            • Realpart
            • Plusp
          • Efficiency
          • Irrelevant-formals
          • Introduction-to-programming-in-ACL2-for-those-who-know-lisp
          • Redefining-programs
          • Lists
          • Invariant-risk
          • Errors
          • Defabbrev
          • Conses
          • Alists
          • Set-register-invariant-risk
          • Strings
          • Program-wrapper
          • Get-internal-time
          • Basics
          • Packages
          • Oracle-eval
          • Defmacro-untouchable
          • <<
          • Primitive
          • Revert-world
          • Unmemoize
          • Set-duplicate-keys-action
          • Symbols
          • Def-list-constructor
          • Easy-simplify-term
          • Defiteration
          • Fake-oracle-eval
          • Defopen
          • Sleep
        • Operational-semantics
        • Real
        • Start-here
        • Debugging
        • Miscellaneous
        • Output-controls
        • Macros
        • Interfacing-tools
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Bitops
    • Integer-length

    Bitops/integer-length

    Basic theorems about integer-length.

    Definitions and Theorems

    Theorem: integer-length-type-prescription-strong

    (defthm integer-length-type-prescription-strong
      (implies (and (integerp n) (< 0 n))
               (and (integerp (integer-length n))
                    (< 0 (integer-length n))))
      :rule-classes :type-prescription)

    Theorem: integer-length-type-prescription-strong-negative

    (defthm integer-length-type-prescription-strong-negative
      (implies (and (integerp n) (< n -1))
               (and (integerp (integer-length n))
                    (< 0 (integer-length n))))
      :rule-classes :type-prescription)

    Theorem: integer-length-expt-upper-bound-n

    (defthm integer-length-expt-upper-bound-n
      (implies (integerp n)
               (< n (expt 2 (integer-length n))))
      :rule-classes :linear)

    Theorem: integer-length-expt-upper-bound-n-1

    (defthm integer-length-expt-upper-bound-n-1
      (implies (integerp n)
               (<= n (expt 2 (integer-length (1- n)))))
      :rule-classes :linear)

    Theorem: integer-length-monotonic

    (defthm integer-length-monotonic
      (implies (and (<= i j) (natp i) (natp j))
               (<= (integer-length i)
                   (integer-length j)))
      :rule-classes :linear)

    Theorem: integer-length-less

    (defthm integer-length-less
      (implies (natp n)
               (<= (integer-length n) n))
      :rule-classes :linear)

    Theorem: (integer-length (expt 2 n))

    (defthm |(integer-length (expt 2 n))|
      (implies (natp n)
               (equal (integer-length (expt 2 n))
                      (+ 1 n))))

    Theorem: (integer-length (1- (expt 2 n)))

    (defthm |(integer-length (1- (expt 2 n)))|
      (implies (natp n)
               (equal (integer-length (+ -1 (expt 2 n)))
                      n)))

    Theorem: (integer-length (floor n 2))

    (defthm |(integer-length (floor n 2))|
      (implies (natp n)
               (equal (integer-length (floor n 2))
                      (if (zp n)
                          0
                        (- (integer-length n) 1)))))

    Theorem: 2^{(integer-length n) - 1} <= n

    (defthm |2^{(integer-length n) - 1} <= n|
      (implies (posp n)
               (<= (expt 2 (1- (integer-length n))) n))
      :rule-classes ((:rewrite) (:linear)))

    Theorem: integer-length-of-logcdr-strong

    (defthm integer-length-of-logcdr-strong
      (implies (posp (integer-length a))
               (< (integer-length (logcdr a))
                  (integer-length a)))
      :rule-classes ((:rewrite) (:linear)))

    Theorem: integer-length-of-logcdr-weak

    (defthm integer-length-of-logcdr-weak
      (<= (integer-length (logcdr a))
          (integer-length a))
      :rule-classes ((:rewrite) (:linear)))

    Theorem: integer-length-bounded-by-expt

    (defthm integer-length-bounded-by-expt
     (implies (and (< a (expt 2 n)) (natp a) (natp n))
              (< (integer-length a) (+ 1 n)))
     :rule-classes
     ((:rewrite
         :corollary
         (implies (and (syntaxp (or (not (quotep n)) (< (cadr n) 1000)))
                       (< a (expt 2 n))
                       (natp a)
                       (natp n))
                  (< (integer-length a) (+ 1 n))))
      (:linear)))

    Theorem: (integer-length (mod a (expt 2 n)))

    (defthm |(integer-length (mod a (expt 2 n)))|
      (implies (and (natp a) (natp n))
               (< (integer-length (mod a (expt 2 n)))
                  (+ 1 n)))
      :rule-classes ((:rewrite) (:linear)))

    Theorem: integer-length-expt-lower-bound

    (defthm integer-length-expt-lower-bound
      (implies (posp n)
               (<= (expt 2 (+ -1 (integer-length n)))
                   n))
      :rule-classes :linear)

    Theorem: integer-length-when-less-than-exp

    (defthm integer-length-when-less-than-exp
      (implies (and (< x (expt 2 y)) (natp x) (natp y))
               (<= (integer-length x) y))
      :rule-classes :linear)

    Theorem: integer-length-when-greater-than-exp

    (defthm integer-length-when-greater-than-exp
      (implies (and (<= (expt 2 y) x)
                    (natp x)
                    (integerp y))
               (< y (integer-length x)))
      :rule-classes :linear)

    Theorem: integer-length-unique

    (defthm integer-length-unique
      (implies (and (<= (expt 2 (1- y)) x)
                    (< x (expt 2 y))
                    (posp x)
                    (posp y))
               (equal (integer-length x) y)))