• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
      • Theories
      • Rule-classes
      • Proof-builder
      • Recursion-and-induction
      • Hons-and-memoization
      • Events
      • Parallelism
      • History
      • Programming
        • Defun
        • Declare
        • System-utilities
        • Stobj
        • State
        • Mutual-recursion
        • Memoize
        • Mbe
        • Io
        • Defpkg
        • Apply$
        • Loop$
        • Programming-with-state
        • Arrays
        • Characters
        • Time$
        • Defmacro
        • Loop$-primer
        • Fast-alists
        • Defconst
        • Evaluation
        • Guard
        • Equality-variants
        • Compilation
        • Hons
        • ACL2-built-ins
        • Developers-guide
        • System-attachments
        • Advanced-features
        • Set-check-invariant-risk
        • Numbers
          • Df
          • Unsigned-byte-p
          • Posp
          • Natp
          • <
          • +
          • Bitp
          • Zero-test-idioms
          • Nat-listp
          • Integerp
          • *
          • -
          • Zp
          • Signed-byte-p
          • Logbitp
          • Sharp-f-reader
          • Expt
          • <=
          • Ash
          • Rationalp
          • =
          • Nfix
          • Logand
          • Floor
          • Random$
            • Seed-random$
              • Random-list-aux
              • Random$-lemmas
              • Random-list
            • Integer-listp
            • Complex
            • Numbers-introduction
            • Truncate
            • Code-char
            • Char-code
            • Integer-length
            • Zip
            • Logior
            • Sharp-u-reader
            • Mod
            • Unary--
            • Boole$
            • /
            • Logxor
            • Ifix
            • Lognot
            • Integer-range-p
            • Allocate-fixnum-range
            • ACL2-numberp
            • Sharp-d-reader
            • Mod-expt
            • Ceiling
            • Round
            • Logeqv
            • Fix
            • Explode-nonnegative-integer
            • Max
            • Evenp
            • Zerop
            • Abs
            • Nonnegative-integer-quotient
            • Rfix
            • 1+
            • Pos-listp
            • Signum
            • Rem
            • Real/rationalp
            • Rational-listp
            • >=
            • >
            • Logcount
            • ACL2-number-listp
            • /=
            • Unary-/
            • Realfix
            • Complex/complex-rationalp
            • Logtest
            • Logandc1
            • Logorc1
            • Logandc2
            • Denominator
            • 1-
            • Numerator
            • Logorc2
            • The-number
            • Int=
            • Complex-rationalp
            • Min
            • Lognor
            • Zpf
            • Oddp
            • Minusp
            • Lognand
            • Imagpart
            • Conjugate
            • Realpart
            • Plusp
          • Efficiency
          • Irrelevant-formals
          • Introduction-to-programming-in-ACL2-for-those-who-know-lisp
          • Redefining-programs
          • Lists
          • Invariant-risk
          • Errors
          • Defabbrev
          • Conses
          • Alists
          • Set-register-invariant-risk
          • Strings
          • Program-wrapper
          • Get-internal-time
          • Basics
          • Packages
          • Oracle-eval
          • Defmacro-untouchable
          • <<
          • Primitive
          • Revert-world
          • Unmemoize
          • Set-duplicate-keys-action
          • Symbols
          • Def-list-constructor
          • Easy-simplify-term
          • Defiteration
          • Fake-oracle-eval
          • Defopen
          • Sleep
        • Operational-semantics
        • Real
        • Start-here
        • Debugging
        • Miscellaneous
        • Output-controls
        • Macros
        • Interfacing-tools
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Random$

    Seed-random$

    Influence the random numbers produced by random$.

    General form:

    (include-book "centaur/misc/seed-random" :dir :system)
    (seed-random name
                 [:freshp t/nil]  ;; default t
                 )

    Hypothetical example:

    (seed-random 'foo) ;; randomly seed the generator, name this seed 'foo
    (random$ 50 state) --> (mv 31 state)
    (random$ 50 state) --> (mv 49 state)
    (random$ 50 state) --> (mv 2 state)
    (random$ 50 state) --> (mv 23 state)
    (random$ 50 state) --> (mv 15 state)
    
    (seed-random 'foo) ;; return to the seed named 'foo
    (random$ 50 state) --> (mv 31 state)
    (random$ 50 state) --> (mv 49 state)
    (random$ 50 state) --> (mv 2 state)
    
    (seed-random 'bar :freshp nil) ;; copy current seed, name it 'bar
    (random$ 50 state) --> (mv 23 state)
    (random$ 50 state) --> (mv 15 state)
    
    (seed-random 'foo) ;; return to 'foo
    (random$ 50 state) --> (mv 31 state)
    
    (seed-random 'bar) ;; return to 'bar
    (random$ 50 state) --> (mv 23 state)
    (random$ 50 state) --> (mv 15 state)

    Logically, seed-random$ ignores its arguments and just returns nil. We leave it enabled and would think it odd to ever prove a theorem about it.

    Under the hood, seed-random$ influences the behavior of random$. Note that in its implementation, the ACL2 function (random$ limit state) basically just calls (random limit) to produce its result. To understand seed-random$, it is useful to recall some features of Common Lisp:

    • A random-state is an implementation-defined data type that is used by the random function to produce random numbers.
    • In particular, (random limit &optional random-state) can use some particular random-state or, by default, uses whatever random-state is currently bound to the special variable *random-state*.
    • A fresh, "randomly initialized" random-state can be produced with (make-random-state t).
    • The current *random-state* can be copied with (make-random-state nil).

    So, what does seed-random$ do?

    We maintain a hidden association list that maps names to random-states. These names can be any ACL2 objects, but we typically use symbols.

    When seed-random$ is called with a name that is already bound to some state, we just restore *random-state* to this state. This effectively resets the random number generator so that it produces the same random numbers as before.

    When seed-random$ is called with a name that has not been bound yet, its behavior depends on the optional freshp keyword-argument.

    When freshp is t (the default), we construct a "randomly initialized" random-state, bind name to it, and install it as *random-state*. In other words, when foo has never been used as a name before, (seed-random$ 'foo) effectively initializes the random number generator to a truly random state.

    On the other hand, when freshp is nil we simply copy and name the current *random-state*. It appears that, at least on CCL, the *random-state* starts the same upon every invocation of ACL2. Hence, if you launch ACL2 and then immediately invoke

    (seed-random 'seed :freshp nil)

    you can obtain a sequence of random numbers that you can return to even after restarting ACL2, and which can be returned to at any time during the session by just calling (seed-random 'seed).