• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
      • Theories
      • Rule-classes
      • Proof-builder
      • Recursion-and-induction
      • Hons-and-memoization
      • Events
      • Parallelism
      • History
      • Programming
        • Defun
        • Declare
        • System-utilities
        • Stobj
        • State
        • Mutual-recursion
        • Memoize
        • Mbe
        • Io
        • Defpkg
        • Apply$
        • Loop$
        • Programming-with-state
        • Arrays
        • Characters
        • Time$
        • Defmacro
        • Loop$-primer
        • Fast-alists
        • Defconst
        • Evaluation
        • Guard
          • Verify-guards
          • Mbe
          • Set-guard-checking
          • Ec-call
          • Print-gv
          • The
          • Guards-and-evaluation
          • Guard-debug
          • Set-check-invariant-risk
          • Guard-evaluation-table
          • Guard-evaluation-examples-log
          • Guard-example
          • Defthmg
          • Invariant-risk
          • With-guard-checking
          • Guard-miscellany
          • Guard-holders
          • Guard-formula-utilities
          • Set-verify-guards-eagerness
          • Guard-quick-reference
          • Set-register-invariant-risk
          • Guards-for-specification
          • Guard-evaluation-examples-script
          • Guard-introduction
          • Program-only
          • Non-exec
          • Set-guard-msg
          • Safe-mode
          • Set-print-gv-defaults
          • Guard-theorem-example
            • With-guard-checking-event
            • With-guard-checking-error-triple
            • Guard-checking-inhibited
            • Extra-info
          • Equality-variants
          • Compilation
          • Hons
          • ACL2-built-ins
          • Developers-guide
          • System-attachments
          • Advanced-features
          • Set-check-invariant-risk
          • Numbers
          • Efficiency
          • Irrelevant-formals
          • Introduction-to-programming-in-ACL2-for-those-who-know-lisp
          • Redefining-programs
          • Lists
          • Invariant-risk
          • Errors
          • Defabbrev
          • Conses
          • Alists
          • Set-register-invariant-risk
          • Strings
          • Program-wrapper
          • Get-internal-time
          • Basics
          • Packages
          • Oracle-eval
          • Defmacro-untouchable
          • <<
          • Primitive
          • Revert-world
          • Unmemoize
          • Set-duplicate-keys-action
          • Symbols
          • Def-list-constructor
          • Easy-simplify-term
          • Defiteration
          • Fake-oracle-eval
          • Defopen
          • Sleep
        • Operational-semantics
        • Real
        • Start-here
        • Debugging
        • Miscellaneous
        • Output-controls
        • Macros
        • Interfacing-tools
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Lemma-instance
    • Guard
    • Hints
    • Guard-theorem
    • Guard-formula-utilities

    Guard-theorem-example

    How to use a previously-proved guard theorem

    See lemma-instance for a discussion of :guard-theorem lemma instances, and see gthm for a related user-level query utility. In this topic, we illustrate the use of such lemma instances to take advantage of a guard theorem already proved for an existing definition, when attempting to admit a new definition.

    The following example is contrived but should get the idea across. Suppose that the event displayed just below was previously executed, for example when including a book. The mbe call generates a guard proof obligation, but there is only one thing to know about that for this example: without the local lemma shown, the guard proof fails for f1.

    (encapsulate
      ()
      (local (defthm append-revappend
               (equal (append (revappend x y) z)
                      (revappend x (append y z)))))
    
      (defun f1 (x y)
        (declare (xargs :guard (and (true-listp x)
                                    (true-listp y))))
        (mbe :logic (append (reverse x) y)
             :exec (revappend x y))))

    Now suppose that later, we wish to admit a function with the same guard and body. Since the lemma append-revappend above is local, guard verification will likely fail. However, we can tell the prover to use the guard theorem already proved for f1, as follows; then the guard verification proof succeeds.

    (defun f2 (x y)
      (declare (xargs :guard (and (true-listp x)
                                  (true-listp y))
                      :guard-hints (("Goal" :use ((:guard-theorem f1))))))
      (mbe :logic (append (reverse x) y)
           :exec (revappend x y)))

    See termination-theorem-example for an example use of the analogous lemma instance type, :termination-theorem. That topic also includes discussion of the use of event names in prover output.