• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
      • Std/lists
      • Std/alists
      • Obags
      • Std/util
      • Std/strings
        • Pretty-printing
        • Printtree
        • Base64
        • Charset-p
          • Defcharset
          • Count-leading-charset
            • Str-count-leading-charset-fast
            • Str-count-leading-charset
            • Chars-in-charset-p
            • Code-in-charset-p
            • Char-in-charset-p
          • Strtok!
          • Cases
          • Concatenation
          • Html-encoding
          • Character-kinds
          • Substrings
          • Strtok
          • Equivalences
          • Url-encoding
          • Lines
          • Explode-implode-equalities
          • Ordering
          • Numbers
          • Pad-trim
          • Coercion
          • Std/strings/digit-to-char
          • Substitution
          • Symbols
        • Std/osets
        • Std/io
        • Std/basic
        • Std/system
        • Std/typed-lists
        • Std/bitsets
        • Std/testing
        • Std/typed-alists
        • Std/stobjs
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Charset-p

    Count-leading-charset

    Count how many characters at the start of a list are members of a particular character set.

    Signature
    (count-leading-charset x set) → num
    Arguments
    x — Guard (character-listp x).
    set — Guard (charset-p set).
    Returns
    num — Type (natp num).

    Definitions and Theorems

    Function: count-leading-charset

    (defun count-leading-charset (x set)
      (declare (xargs :guard (and (character-listp x)
                                  (charset-p set))))
      (let ((acl2::__function__ 'count-leading-charset))
        (declare (ignorable acl2::__function__))
        (cond ((atom x) 0)
              ((char-in-charset-p (car x) set)
               (+ 1 (count-leading-charset (cdr x) set)))
              (t 0))))

    Theorem: natp-of-count-leading-charset

    (defthm natp-of-count-leading-charset
      (b* ((num (count-leading-charset x set)))
        (natp num))
      :rule-classes :type-prescription)

    Theorem: upper-bound-of-count-leading-charset

    (defthm upper-bound-of-count-leading-charset
      (<= (count-leading-charset x set)
          (len x))
      :rule-classes ((:rewrite) (:linear)))

    Theorem: count-leading-charset-len

    (defthm count-leading-charset-len
      (equal (equal (len x)
                    (count-leading-charset x set))
             (chars-in-charset-p x set))
      :rule-classes
      ((:rewrite)
       (:rewrite :corollary (equal (< (count-leading-charset x set)
                                      (len x))
                                   (not (chars-in-charset-p x set))))
       (:linear :corollary (implies (not (chars-in-charset-p x set))
                                    (< (count-leading-charset x set)
                                       (len x))))))

    Theorem: count-leading-charset-zero

    (defthm count-leading-charset-zero
      (equal (equal 0 (count-leading-charset x set))
             (not (char-in-charset-p (car x) set)))
      :rule-classes
      ((:rewrite)
       (:rewrite :corollary (equal (< 0 (count-leading-charset x set))
                                   (char-in-charset-p (car x) set)))
       (:linear
            :corollary (implies (char-in-charset-p (car x) set)
                                (< 0 (count-leading-charset x set))))))

    Theorem: count-leading-charset-sound

    (defthm count-leading-charset-sound
      (let ((n (count-leading-charset x set)))
        (chars-in-charset-p (take n x) set)))

    Theorem: count-leading-charset-complete

    (defthm count-leading-charset-complete
      (b* ((n (count-leading-charset x set))
           (next-char (nth n x)))
        (not (char-in-charset-p next-char set))))