• Top
    • Documentation
    • Books
    • Boolean-reasoning
      • Ipasir
      • Aignet
      • Aig
      • Satlink
      • Truth
        • Index-permute-shrink
        • Permute-stretch
        • Permute-shrink
        • Env-mismatch-aux
        • Env-permute-shrink
        • Permute-polarity
        • Env-permute-polarity
        • Permute-var-down
        • Env-permute-stretch
        • Swap-vars-aux
        • Swap-vars
        • Permute-var-up
        • Truth-perm-rev
        • Negative-cofactor
        • Index-permute-stretch
        • Env-mismatch
        • Swap-polarity
        • Positive-cofactor
          • Truth-perm
          • Index-perm-rev
          • Nth-set-bit-pos
          • Env-perm-rev
          • Is-xor-with-var
          • Index-swap
          • Index-perm
          • Env-move-var-down
          • Truth-eval
          • Env-swap-vars
          • Env-perm
          • Depends-on-witness
          • Var
          • Index-move-down
          • Env-update
          • Env-swap-polarity
          • Var-repetitions
          • Env-move-var-up
          • Depends-on
          • Index-move-up
          • Truth-norm
          • Index-listp
          • Env-diff-index
          • Env-lookup
          • True
          • False
        • Ubdds
        • Bdd
        • Faig
        • Bed
        • 4v
      • Projects
      • Debugging
      • Std
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Truth

    Positive-cofactor

    Signature
    (positive-cofactor n truth numvars) → cofactor
    Arguments
    n — Guard (natp n).
    truth — Guard (integerp truth).
    numvars — Guard (natp numvars).
    Returns
    cofactor — Type (integerp cofactor).

    Definitions and Theorems

    Function: positive-cofactor

    (defun positive-cofactor (n truth numvars)
      (declare (xargs :guard (and (natp n)
                                  (integerp truth)
                                  (natp numvars))))
      (declare (xargs :guard (< n numvars)))
      (let ((__function__ 'positive-cofactor))
        (declare (ignorable __function__))
        (b* ((mask (logand (var n numvars)
                           (truth-norm truth numvars))))
          (logior mask
                  (ash mask (- (ash 1 (lnfix n))))))))

    Theorem: integerp-of-positive-cofactor

    (defthm integerp-of-positive-cofactor
      (b* ((cofactor (positive-cofactor n truth numvars)))
        (integerp cofactor))
      :rule-classes :type-prescription)

    Theorem: positive-cofactor-correct

    (defthm positive-cofactor-correct
      (b* ((?cofactor (positive-cofactor n truth numvars)))
        (implies (< (nfix n) (nfix numvars))
                 (equal (truth-eval cofactor env numvars)
                        (truth-eval truth (env-update n t env)
                                    numvars)))))

    Theorem: positive-cofactor-size-basic

    (defthm positive-cofactor-size-basic
      (b* ((?cofactor (positive-cofactor n truth numvars)))
        (implies (and (< (nfix n) numvars)
                      (natp numvars))
                 (unsigned-byte-p (ash 1 numvars)
                                  cofactor))))

    Theorem: positive-cofactor-size

    (defthm positive-cofactor-size
      (b* ((?cofactor (positive-cofactor n truth numvars)))
        (implies (and (natp m)
                      (<= (ash 1 numvars) m)
                      (< (nfix n) numvars)
                      (natp numvars))
                 (unsigned-byte-p m cofactor))))

    Theorem: positive-cofactor-of-truth-norm

    (defthm positive-cofactor-of-truth-norm
      (equal (positive-cofactor n (truth-norm truth numvars)
                                numvars)
             (positive-cofactor n truth numvars)))

    Theorem: truth-norm-of-positive-cofactor

    (defthm truth-norm-of-positive-cofactor
      (implies (< (nfix n) (nfix numvars))
               (equal (truth-norm (positive-cofactor n truth numvars)
                                  numvars)
                      (positive-cofactor n truth numvars))))

    Theorem: positive-cofactor-of-nfix-n

    (defthm positive-cofactor-of-nfix-n
      (equal (positive-cofactor (nfix n)
                                truth numvars)
             (positive-cofactor n truth numvars)))

    Theorem: positive-cofactor-nat-equiv-congruence-on-n

    (defthm positive-cofactor-nat-equiv-congruence-on-n
      (implies (nat-equiv n n-equiv)
               (equal (positive-cofactor n truth numvars)
                      (positive-cofactor n-equiv truth numvars)))
      :rule-classes :congruence)

    Theorem: positive-cofactor-of-ifix-truth

    (defthm positive-cofactor-of-ifix-truth
      (equal (positive-cofactor n (ifix truth)
                                numvars)
             (positive-cofactor n truth numvars)))

    Theorem: positive-cofactor-int-equiv-congruence-on-truth

    (defthm positive-cofactor-int-equiv-congruence-on-truth
      (implies (int-equiv truth truth-equiv)
               (equal (positive-cofactor n truth numvars)
                      (positive-cofactor n truth-equiv numvars)))
      :rule-classes :congruence)

    Theorem: positive-cofactor-of-nfix-numvars

    (defthm positive-cofactor-of-nfix-numvars
      (equal (positive-cofactor n truth (nfix numvars))
             (positive-cofactor n truth numvars)))

    Theorem: positive-cofactor-nat-equiv-congruence-on-numvars

    (defthm positive-cofactor-nat-equiv-congruence-on-numvars
      (implies (nat-equiv numvars numvars-equiv)
               (equal (positive-cofactor n truth numvars)
                      (positive-cofactor n truth numvars-equiv)))
      :rule-classes :congruence)