Semantics of the
We read two unsigned
Function:
(defun exec-srl (rd rs1 rs2 stat feat) (declare (xargs :guard (and (ubyte5p rd) (ubyte5p rs1) (ubyte5p rs2) (statp stat) (featp feat)))) (declare (xargs :guard (stat-validp stat feat))) (let ((__function__ 'exec-srl)) (declare (ignorable __function__)) (b* ((rs1-operand (read-xreg-unsigned (ubyte5-fix rs1) stat feat)) (rs2-operand (read-xreg-unsigned (ubyte5-fix rs2) stat feat)) (shift-amount (cond ((feat-32p feat) (loghead 5 rs2-operand)) ((feat-64p feat) (loghead 6 rs2-operand)) (t (impossible)))) (result (ash rs1-operand (- shift-amount))) (stat (write-xreg (ubyte5-fix rd) result stat feat)) (stat (inc4-pc stat feat))) stat)))
Theorem:
(defthm statp-of-exec-srl (b* ((new-stat (exec-srl rd rs1 rs2 stat feat))) (statp new-stat)) :rule-classes :rewrite)
Theorem:
(defthm exec-srl-of-ubyte5-fix-rd (equal (exec-srl (ubyte5-fix rd) rs1 rs2 stat feat) (exec-srl rd rs1 rs2 stat feat)))
Theorem:
(defthm exec-srl-ubyte5-equiv-congruence-on-rd (implies (ubyte5-equiv rd rd-equiv) (equal (exec-srl rd rs1 rs2 stat feat) (exec-srl rd-equiv rs1 rs2 stat feat))) :rule-classes :congruence)
Theorem:
(defthm exec-srl-of-ubyte5-fix-rs1 (equal (exec-srl rd (ubyte5-fix rs1) rs2 stat feat) (exec-srl rd rs1 rs2 stat feat)))
Theorem:
(defthm exec-srl-ubyte5-equiv-congruence-on-rs1 (implies (ubyte5-equiv rs1 rs1-equiv) (equal (exec-srl rd rs1 rs2 stat feat) (exec-srl rd rs1-equiv rs2 stat feat))) :rule-classes :congruence)
Theorem:
(defthm exec-srl-of-ubyte5-fix-rs2 (equal (exec-srl rd rs1 (ubyte5-fix rs2) stat feat) (exec-srl rd rs1 rs2 stat feat)))
Theorem:
(defthm exec-srl-ubyte5-equiv-congruence-on-rs2 (implies (ubyte5-equiv rs2 rs2-equiv) (equal (exec-srl rd rs1 rs2 stat feat) (exec-srl rd rs1 rs2-equiv stat feat))) :rule-classes :congruence)
Theorem:
(defthm exec-srl-of-stat-fix-stat (equal (exec-srl rd rs1 rs2 (stat-fix stat) feat) (exec-srl rd rs1 rs2 stat feat)))
Theorem:
(defthm exec-srl-stat-equiv-congruence-on-stat (implies (stat-equiv stat stat-equiv) (equal (exec-srl rd rs1 rs2 stat feat) (exec-srl rd rs1 rs2 stat-equiv feat))) :rule-classes :congruence)
Theorem:
(defthm exec-srl-of-feat-fix-feat (equal (exec-srl rd rs1 rs2 stat (feat-fix feat)) (exec-srl rd rs1 rs2 stat feat)))
Theorem:
(defthm exec-srl-feat-equiv-congruence-on-feat (implies (feat-equiv feat feat-equiv) (equal (exec-srl rd rs1 rs2 stat feat) (exec-srl rd rs1 rs2 stat feat-equiv))) :rule-classes :congruence)