Semantics of the shift instructions with the
Function:
(defun exec-op-imms64 (funct rd rs1 imm stat feat) (declare (xargs :guard (and (op-imms-funct-p funct) (ubyte5p rd) (ubyte5p rs1) (ubyte6p imm) (statp stat) (featp feat)))) (declare (xargs :guard (and (feat-64p feat) (stat-validp stat feat)))) (let ((__function__ 'exec-op-imms64)) (declare (ignorable __function__)) (op-imms-funct-case funct :slli (exec-slli64 rd rs1 imm stat feat) :srli (exec-srli64 rd rs1 imm stat feat) :srai (exec-srai64 rd rs1 imm stat feat))))
Theorem:
(defthm statp-of-exec-op-imms64 (b* ((new-stat (exec-op-imms64 funct rd rs1 imm stat feat))) (statp new-stat)) :rule-classes :rewrite)
Theorem:
(defthm exec-op-imms64-of-op-imms-funct-fix-funct (equal (exec-op-imms64 (op-imms-funct-fix funct) rd rs1 imm stat feat) (exec-op-imms64 funct rd rs1 imm stat feat)))
Theorem:
(defthm exec-op-imms64-op-imms-funct-equiv-congruence-on-funct (implies (op-imms-funct-equiv funct funct-equiv) (equal (exec-op-imms64 funct rd rs1 imm stat feat) (exec-op-imms64 funct-equiv rd rs1 imm stat feat))) :rule-classes :congruence)
Theorem:
(defthm exec-op-imms64-of-ubyte5-fix-rd (equal (exec-op-imms64 funct (ubyte5-fix rd) rs1 imm stat feat) (exec-op-imms64 funct rd rs1 imm stat feat)))
Theorem:
(defthm exec-op-imms64-ubyte5-equiv-congruence-on-rd (implies (ubyte5-equiv rd rd-equiv) (equal (exec-op-imms64 funct rd rs1 imm stat feat) (exec-op-imms64 funct rd-equiv rs1 imm stat feat))) :rule-classes :congruence)
Theorem:
(defthm exec-op-imms64-of-ubyte5-fix-rs1 (equal (exec-op-imms64 funct rd (ubyte5-fix rs1) imm stat feat) (exec-op-imms64 funct rd rs1 imm stat feat)))
Theorem:
(defthm exec-op-imms64-ubyte5-equiv-congruence-on-rs1 (implies (ubyte5-equiv rs1 rs1-equiv) (equal (exec-op-imms64 funct rd rs1 imm stat feat) (exec-op-imms64 funct rd rs1-equiv imm stat feat))) :rule-classes :congruence)
Theorem:
(defthm exec-op-imms64-of-ubyte6-fix-imm (equal (exec-op-imms64 funct rd rs1 (ubyte6-fix imm) stat feat) (exec-op-imms64 funct rd rs1 imm stat feat)))
Theorem:
(defthm exec-op-imms64-ubyte6-equiv-congruence-on-imm (implies (acl2::ubyte6-equiv imm imm-equiv) (equal (exec-op-imms64 funct rd rs1 imm stat feat) (exec-op-imms64 funct rd rs1 imm-equiv stat feat))) :rule-classes :congruence)
Theorem:
(defthm exec-op-imms64-of-stat-fix-stat (equal (exec-op-imms64 funct rd rs1 imm (stat-fix stat) feat) (exec-op-imms64 funct rd rs1 imm stat feat)))
Theorem:
(defthm exec-op-imms64-stat-equiv-congruence-on-stat (implies (stat-equiv stat stat-equiv) (equal (exec-op-imms64 funct rd rs1 imm stat feat) (exec-op-imms64 funct rd rs1 imm stat-equiv feat))) :rule-classes :congruence)
Theorem:
(defthm exec-op-imms64-of-feat-fix-feat (equal (exec-op-imms64 funct rd rs1 imm stat (feat-fix feat)) (exec-op-imms64 funct rd rs1 imm stat feat)))
Theorem:
(defthm exec-op-imms64-feat-equiv-congruence-on-feat (implies (feat-equiv feat feat-equiv) (equal (exec-op-imms64 funct rd rs1 imm stat feat) (exec-op-imms64 funct rd rs1 imm stat feat-equiv))) :rule-classes :congruence)