Semantics of the instructions with the
Function:
(defun exec-op-32 (funct rd rs1 rs2 stat feat) (declare (xargs :guard (and (op-32-funct-p funct) (ubyte5p rd) (ubyte5p rs1) (ubyte5p rs2) (statp stat) (featp feat)))) (declare (xargs :guard (and (feat-64p feat) (stat-validp stat feat)))) (let ((__function__ 'exec-op-32)) (declare (ignorable __function__)) (op-32-funct-case funct :addw (exec-addw rd rs1 rs2 stat feat) :subw (exec-subw rd rs1 rs2 stat feat) :sllw (exec-sllw rd rs1 rs2 stat feat) :srlw (exec-srlw rd rs1 rs2 stat feat) :sraw (exec-sraw rd rs1 rs2 stat feat) :mulw (exec-mulw rd rs1 rs2 stat feat) :divw (exec-divw rd rs1 rs2 stat feat) :divuw (exec-divuw rd rs1 rs2 stat feat) :remw (exec-remw rd rs1 rs2 stat feat) :remuw (exec-remuw rd rs1 rs2 stat feat))))
Theorem:
(defthm statp-of-exec-op-32 (b* ((new-stat (exec-op-32 funct rd rs1 rs2 stat feat))) (statp new-stat)) :rule-classes :rewrite)
Theorem:
(defthm stat-validp-of-exec-op-32 (implies (stat-validp stat feat) (b* ((?new-stat (exec-op-32 funct rd rs1 rs2 stat feat))) (stat-validp new-stat feat))))
Theorem:
(defthm exec-op-32-of-op-32-funct-fix-funct (equal (exec-op-32 (op-32-funct-fix funct) rd rs1 rs2 stat feat) (exec-op-32 funct rd rs1 rs2 stat feat)))
Theorem:
(defthm exec-op-32-op-32-funct-equiv-congruence-on-funct (implies (op-32-funct-equiv funct funct-equiv) (equal (exec-op-32 funct rd rs1 rs2 stat feat) (exec-op-32 funct-equiv rd rs1 rs2 stat feat))) :rule-classes :congruence)
Theorem:
(defthm exec-op-32-of-ubyte5-fix-rd (equal (exec-op-32 funct (ubyte5-fix rd) rs1 rs2 stat feat) (exec-op-32 funct rd rs1 rs2 stat feat)))
Theorem:
(defthm exec-op-32-ubyte5-equiv-congruence-on-rd (implies (ubyte5-equiv rd rd-equiv) (equal (exec-op-32 funct rd rs1 rs2 stat feat) (exec-op-32 funct rd-equiv rs1 rs2 stat feat))) :rule-classes :congruence)
Theorem:
(defthm exec-op-32-of-ubyte5-fix-rs1 (equal (exec-op-32 funct rd (ubyte5-fix rs1) rs2 stat feat) (exec-op-32 funct rd rs1 rs2 stat feat)))
Theorem:
(defthm exec-op-32-ubyte5-equiv-congruence-on-rs1 (implies (ubyte5-equiv rs1 rs1-equiv) (equal (exec-op-32 funct rd rs1 rs2 stat feat) (exec-op-32 funct rd rs1-equiv rs2 stat feat))) :rule-classes :congruence)
Theorem:
(defthm exec-op-32-of-ubyte5-fix-rs2 (equal (exec-op-32 funct rd rs1 (ubyte5-fix rs2) stat feat) (exec-op-32 funct rd rs1 rs2 stat feat)))
Theorem:
(defthm exec-op-32-ubyte5-equiv-congruence-on-rs2 (implies (ubyte5-equiv rs2 rs2-equiv) (equal (exec-op-32 funct rd rs1 rs2 stat feat) (exec-op-32 funct rd rs1 rs2-equiv stat feat))) :rule-classes :congruence)
Theorem:
(defthm exec-op-32-of-stat-fix-stat (equal (exec-op-32 funct rd rs1 rs2 (stat-fix stat) feat) (exec-op-32 funct rd rs1 rs2 stat feat)))
Theorem:
(defthm exec-op-32-stat-equiv-congruence-on-stat (implies (stat-equiv stat stat-equiv) (equal (exec-op-32 funct rd rs1 rs2 stat feat) (exec-op-32 funct rd rs1 rs2 stat-equiv feat))) :rule-classes :congruence)
Theorem:
(defthm exec-op-32-of-feat-fix-feat (equal (exec-op-32 funct rd rs1 rs2 stat (feat-fix feat)) (exec-op-32 funct rd rs1 rs2 stat feat)))
Theorem:
(defthm exec-op-32-feat-equiv-congruence-on-feat (implies (feat-equiv feat feat-equiv) (equal (exec-op-32 funct rd rs1 rs2 stat feat) (exec-op-32 funct rd rs1 rs2 stat feat-equiv))) :rule-classes :congruence)