Semantics of the
We read an unsigned
Function:
(defun exec-sltiu (rd rs1 imm stat feat) (declare (xargs :guard (and (ubyte5p rd) (ubyte5p rs1) (ubyte12p imm) (statp stat) (featp feat)))) (declare (xargs :guard (stat-validp stat feat))) (let ((__function__ 'exec-sltiu)) (declare (ignorable __function__)) (b* ((rs1-operand (read-xreg-unsigned (ubyte5-fix rs1) stat feat)) (imm-operand (loghead (feat->xlen feat) (logext 12 (ubyte12-fix imm)))) (result (if (< rs1-operand imm-operand) 1 0)) (stat (write-xreg (ubyte5-fix rd) result stat feat)) (stat (inc4-pc stat feat))) stat)))
Theorem:
(defthm statp-of-exec-sltiu (b* ((new-stat (exec-sltiu rd rs1 imm stat feat))) (statp new-stat)) :rule-classes :rewrite)
Theorem:
(defthm exec-sltiu-of-ubyte5-fix-rd (equal (exec-sltiu (ubyte5-fix rd) rs1 imm stat feat) (exec-sltiu rd rs1 imm stat feat)))
Theorem:
(defthm exec-sltiu-ubyte5-equiv-congruence-on-rd (implies (ubyte5-equiv rd rd-equiv) (equal (exec-sltiu rd rs1 imm stat feat) (exec-sltiu rd-equiv rs1 imm stat feat))) :rule-classes :congruence)
Theorem:
(defthm exec-sltiu-of-ubyte5-fix-rs1 (equal (exec-sltiu rd (ubyte5-fix rs1) imm stat feat) (exec-sltiu rd rs1 imm stat feat)))
Theorem:
(defthm exec-sltiu-ubyte5-equiv-congruence-on-rs1 (implies (ubyte5-equiv rs1 rs1-equiv) (equal (exec-sltiu rd rs1 imm stat feat) (exec-sltiu rd rs1-equiv imm stat feat))) :rule-classes :congruence)
Theorem:
(defthm exec-sltiu-of-ubyte12-fix-imm (equal (exec-sltiu rd rs1 (ubyte12-fix imm) stat feat) (exec-sltiu rd rs1 imm stat feat)))
Theorem:
(defthm exec-sltiu-ubyte12-equiv-congruence-on-imm (implies (acl2::ubyte12-equiv imm imm-equiv) (equal (exec-sltiu rd rs1 imm stat feat) (exec-sltiu rd rs1 imm-equiv stat feat))) :rule-classes :congruence)
Theorem:
(defthm exec-sltiu-of-stat-fix-stat (equal (exec-sltiu rd rs1 imm (stat-fix stat) feat) (exec-sltiu rd rs1 imm stat feat)))
Theorem:
(defthm exec-sltiu-stat-equiv-congruence-on-stat (implies (stat-equiv stat stat-equiv) (equal (exec-sltiu rd rs1 imm stat feat) (exec-sltiu rd rs1 imm stat-equiv feat))) :rule-classes :congruence)
Theorem:
(defthm exec-sltiu-of-feat-fix-feat (equal (exec-sltiu rd rs1 imm stat (feat-fix feat)) (exec-sltiu rd rs1 imm stat feat)))
Theorem:
(defthm exec-sltiu-feat-equiv-congruence-on-feat (implies (feat-equiv feat feat-equiv) (equal (exec-sltiu rd rs1 imm stat feat) (exec-sltiu rd rs1 imm stat feat-equiv))) :rule-classes :congruence)