Semantics of the
We read two unsigned 32-bit integers from
Function:
(defun exec-divuw (rd rs1 rs2 stat feat) (declare (xargs :guard (and (ubyte5p rd) (ubyte5p rs1) (ubyte5p rs2) (statp stat) (featp feat)))) (declare (xargs :guard (and (feat-64p feat) (stat-validp stat feat)))) (let ((__function__ 'exec-divuw)) (declare (ignorable __function__)) (b* ((rs1-operand (read-xreg-unsigned32 (ubyte5-fix rs1) stat feat)) (rs2-operand (read-xreg-unsigned32 (ubyte5-fix rs2) stat feat)) (result (if (= rs2-operand 0) (1- (expt 2 32)) (truncate rs1-operand rs2-operand))) (stat (write-xreg-32 (ubyte5-fix rd) result stat feat)) (stat (inc4-pc stat feat))) stat)))
Theorem:
(defthm statp-of-exec-divuw (b* ((new-stat (exec-divuw rd rs1 rs2 stat feat))) (statp new-stat)) :rule-classes :rewrite)
Theorem:
(defthm exec-divuw-of-ubyte5-fix-rd (equal (exec-divuw (ubyte5-fix rd) rs1 rs2 stat feat) (exec-divuw rd rs1 rs2 stat feat)))
Theorem:
(defthm exec-divuw-ubyte5-equiv-congruence-on-rd (implies (ubyte5-equiv rd rd-equiv) (equal (exec-divuw rd rs1 rs2 stat feat) (exec-divuw rd-equiv rs1 rs2 stat feat))) :rule-classes :congruence)
Theorem:
(defthm exec-divuw-of-ubyte5-fix-rs1 (equal (exec-divuw rd (ubyte5-fix rs1) rs2 stat feat) (exec-divuw rd rs1 rs2 stat feat)))
Theorem:
(defthm exec-divuw-ubyte5-equiv-congruence-on-rs1 (implies (ubyte5-equiv rs1 rs1-equiv) (equal (exec-divuw rd rs1 rs2 stat feat) (exec-divuw rd rs1-equiv rs2 stat feat))) :rule-classes :congruence)
Theorem:
(defthm exec-divuw-of-ubyte5-fix-rs2 (equal (exec-divuw rd rs1 (ubyte5-fix rs2) stat feat) (exec-divuw rd rs1 rs2 stat feat)))
Theorem:
(defthm exec-divuw-ubyte5-equiv-congruence-on-rs2 (implies (ubyte5-equiv rs2 rs2-equiv) (equal (exec-divuw rd rs1 rs2 stat feat) (exec-divuw rd rs1 rs2-equiv stat feat))) :rule-classes :congruence)
Theorem:
(defthm exec-divuw-of-stat-fix-stat (equal (exec-divuw rd rs1 rs2 (stat-fix stat) feat) (exec-divuw rd rs1 rs2 stat feat)))
Theorem:
(defthm exec-divuw-stat-equiv-congruence-on-stat (implies (stat-equiv stat stat-equiv) (equal (exec-divuw rd rs1 rs2 stat feat) (exec-divuw rd rs1 rs2 stat-equiv feat))) :rule-classes :congruence)
Theorem:
(defthm exec-divuw-of-feat-fix-feat (equal (exec-divuw rd rs1 rs2 stat (feat-fix feat)) (exec-divuw rd rs1 rs2 stat feat)))
Theorem:
(defthm exec-divuw-feat-equiv-congruence-on-feat (implies (feat-equiv feat feat-equiv) (equal (exec-divuw rd rs1 rs2 stat feat) (exec-divuw rd rs1 rs2 stat feat-equiv))) :rule-classes :congruence)