Semantics of the
We use the 20 bits of the immediate as
the high bits of an unsigned 32-bit integer,
whose low bits are 0.
In 32-bit mode, we write the integer to
Function:
(defun exec-lui (rd imm stat feat) (declare (xargs :guard (and (ubyte5p rd) (ubyte20p imm) (statp stat) (featp feat)))) (declare (xargs :guard (stat-validp stat feat))) (let ((__function__ 'exec-lui)) (declare (ignorable __function__)) (b* ((result (ash (ubyte20-fix imm) 12)) (stat (cond ((feat-32p feat) (write-xreg (ubyte5-fix rd) result stat feat)) ((feat-64p feat) (write-xreg-32 (ubyte5-fix rd) result stat feat)) (t (impossible)))) (stat (inc4-pc stat feat))) stat)))
Theorem:
(defthm statp-of-exec-lui (b* ((new-stat (exec-lui rd imm stat feat))) (statp new-stat)) :rule-classes :rewrite)
Theorem:
(defthm exec-lui-of-ubyte5-fix-rd (equal (exec-lui (ubyte5-fix rd) imm stat feat) (exec-lui rd imm stat feat)))
Theorem:
(defthm exec-lui-ubyte5-equiv-congruence-on-rd (implies (ubyte5-equiv rd rd-equiv) (equal (exec-lui rd imm stat feat) (exec-lui rd-equiv imm stat feat))) :rule-classes :congruence)
Theorem:
(defthm exec-lui-of-ubyte20-fix-imm (equal (exec-lui rd (ubyte20-fix imm) stat feat) (exec-lui rd imm stat feat)))
Theorem:
(defthm exec-lui-ubyte20-equiv-congruence-on-imm (implies (acl2::ubyte20-equiv imm imm-equiv) (equal (exec-lui rd imm stat feat) (exec-lui rd imm-equiv stat feat))) :rule-classes :congruence)
Theorem:
(defthm exec-lui-of-stat-fix-stat (equal (exec-lui rd imm (stat-fix stat) feat) (exec-lui rd imm stat feat)))
Theorem:
(defthm exec-lui-stat-equiv-congruence-on-stat (implies (stat-equiv stat stat-equiv) (equal (exec-lui rd imm stat feat) (exec-lui rd imm stat-equiv feat))) :rule-classes :congruence)
Theorem:
(defthm exec-lui-of-feat-fix-feat (equal (exec-lui rd imm stat (feat-fix feat)) (exec-lui rd imm stat feat)))
Theorem:
(defthm exec-lui-feat-equiv-congruence-on-feat (implies (feat-equiv feat feat-equiv) (equal (exec-lui rd imm stat feat) (exec-lui rd imm stat feat-equiv))) :rule-classes :congruence)