• Top
    • Documentation
      • Xdoc
        • Missing-parents
          • Exec-bgeu
          • Exec-bltu
          • Exec-blt
          • Exec-bge
          • Exec-jalr
          • Exec-bne
          • Exec-beq
          • Exec-sra
          • Exec-op-imms-32
          • Exec-srl
          • Exec-sll
          • Exec-op-imms64
          • Exec-op-imms32
          • Exec-op-imm-32
          • Exec-op-32
          • Exec-op
          • Exec-branch
          • Exec-srlw
          • Exec-srliw
          • Exec-sraw
          • Exec-sraiw
          • Exec-sltiu
          • Exec-remuw
            • Exec-op-imm
            • Exec-jal
            • Exec-store
            • Exec-srli64
            • Exec-srli32
            • Exec-srai64
            • Exec-srai32
            • Exec-sllw
            • Exec-remw
            • Exec-load
            • Exec-divuw
            • Exec-addiw
            • Exec-xori
            • Exec-slti
            • Exec-slliw
            • Exec-remu
            • Exec-rem
            • Exec-divw
            • Exec-sw
            • Exec-slli64
            • Exec-slli32
            • Exec-ori
            • Exec-mulhsu
            • Exec-divu
            • Exec-andi
            • Exec-addi
            • Exec-sltu
            • Exec-slt
            • Exec-mulhu
            • Exec-lwu
            • Exec-div
            • Exec-auipc
            • Exec-addw
            • Exec-xor
            • Exec-mulw
            • Exec-mulh
            • Exec-and
            • Exec-subw
            • Exec-sub
            • Exec-sh
            • Exec-sd
            • Exec-sb
            • Exec-or
            • Exec-lhu
            • Exec-lh
            • Exec-ld
            • Exec-lbu
            • Exec-lb
            • Exec-mul
            • Exec-add
            • Exec-lw
            • Exec-lui
            • Eff-addr
            • Exec-instr
            • Missing-parents-test
          • Undocumented
          • Save
          • Defsection
          • Markup
          • Preprocessor
          • Terminal
          • Emacs-links
          • Defxdoc
          • Katex-integration
          • Constructors
          • Entities
          • Defxdoc+
          • Save-rendered
          • Add-resource-directory
          • Testing
          • Order-subtopics
          • Save-rendered-event
          • Archive-matching-topics
          • Archive-xdoc
          • Xdoc-extend
          • Set-default-parents
          • Defpointer
          • Defxdoc-raw
          • Xdoc-tests
          • Xdoc-prepend
          • Defsection-progn
          • Gen-xdoc-for-file
        • ACL2-doc
        • Recursion-and-induction
        • Loop$-primer
        • Operational-semantics
        • Pointers
        • Doc
        • Documentation-copyright
        • Course-materials
        • Publications
        • Args
        • ACL2-doc-summary
        • Finding-documentation
        • Broken-link
        • Doc-terminal-test-2
        • Doc-terminal-test-1
      • Books
      • Boolean-reasoning
      • Projects
      • Debugging
      • Std
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Missing-parents

    Exec-remuw

    Semantics of the REMUW instruction [ISA:13.2].

    Signature
    (exec-remuw rd rs1 rs2 stat feat) → new-stat
    Arguments
    rd — Guard (ubyte5p rd).
    rs1 — Guard (ubyte5p rs1).
    rs2 — Guard (ubyte5p rs2).
    stat — Guard (statp stat).
    feat — Guard (featp feat).
    Returns
    new-stat — Type (statp new-stat).

    We read two unsigned 32-bit integers from rs1 and rs2. We calculate the remainder of the first by the second, based on division towards 0; if the divisor is 0, the result is the dividend (see Table 11 in [ISA:13.2]). We write the result to rd as a signed 32-bit integer. We increment the program counter.

    Definitions and Theorems

    Function: exec-remuw

    (defun exec-remuw (rd rs1 rs2 stat feat)
      (declare (xargs :guard (and (ubyte5p rd)
                                  (ubyte5p rs1)
                                  (ubyte5p rs2)
                                  (statp stat)
                                  (featp feat))))
      (declare (xargs :guard (and (feat-64p feat)
                                  (stat-validp stat feat))))
      (let ((__function__ 'exec-remuw))
        (declare (ignorable __function__))
        (b* ((rs1-operand (read-xreg-unsigned32 (ubyte5-fix rs1)
                                                stat feat))
             (rs2-operand (read-xreg-unsigned32 (ubyte5-fix rs2)
                                                stat feat))
             (result (if (= rs2-operand 0)
                         rs1-operand
                       (rem rs1-operand rs2-operand)))
             (stat (write-xreg-32 (ubyte5-fix rd)
                                  result stat feat))
             (stat (inc4-pc stat feat)))
          stat)))

    Theorem: statp-of-exec-remuw

    (defthm statp-of-exec-remuw
      (b* ((new-stat (exec-remuw rd rs1 rs2 stat feat)))
        (statp new-stat))
      :rule-classes :rewrite)

    Theorem: exec-remuw-of-ubyte5-fix-rd

    (defthm exec-remuw-of-ubyte5-fix-rd
      (equal (exec-remuw (ubyte5-fix rd)
                         rs1 rs2 stat feat)
             (exec-remuw rd rs1 rs2 stat feat)))

    Theorem: exec-remuw-ubyte5-equiv-congruence-on-rd

    (defthm exec-remuw-ubyte5-equiv-congruence-on-rd
      (implies (ubyte5-equiv rd rd-equiv)
               (equal (exec-remuw rd rs1 rs2 stat feat)
                      (exec-remuw rd-equiv rs1 rs2 stat feat)))
      :rule-classes :congruence)

    Theorem: exec-remuw-of-ubyte5-fix-rs1

    (defthm exec-remuw-of-ubyte5-fix-rs1
      (equal (exec-remuw rd (ubyte5-fix rs1)
                         rs2 stat feat)
             (exec-remuw rd rs1 rs2 stat feat)))

    Theorem: exec-remuw-ubyte5-equiv-congruence-on-rs1

    (defthm exec-remuw-ubyte5-equiv-congruence-on-rs1
      (implies (ubyte5-equiv rs1 rs1-equiv)
               (equal (exec-remuw rd rs1 rs2 stat feat)
                      (exec-remuw rd rs1-equiv rs2 stat feat)))
      :rule-classes :congruence)

    Theorem: exec-remuw-of-ubyte5-fix-rs2

    (defthm exec-remuw-of-ubyte5-fix-rs2
      (equal (exec-remuw rd rs1 (ubyte5-fix rs2)
                         stat feat)
             (exec-remuw rd rs1 rs2 stat feat)))

    Theorem: exec-remuw-ubyte5-equiv-congruence-on-rs2

    (defthm exec-remuw-ubyte5-equiv-congruence-on-rs2
      (implies (ubyte5-equiv rs2 rs2-equiv)
               (equal (exec-remuw rd rs1 rs2 stat feat)
                      (exec-remuw rd rs1 rs2-equiv stat feat)))
      :rule-classes :congruence)

    Theorem: exec-remuw-of-stat-fix-stat

    (defthm exec-remuw-of-stat-fix-stat
      (equal (exec-remuw rd rs1 rs2 (stat-fix stat)
                         feat)
             (exec-remuw rd rs1 rs2 stat feat)))

    Theorem: exec-remuw-stat-equiv-congruence-on-stat

    (defthm exec-remuw-stat-equiv-congruence-on-stat
      (implies (stat-equiv stat stat-equiv)
               (equal (exec-remuw rd rs1 rs2 stat feat)
                      (exec-remuw rd rs1 rs2 stat-equiv feat)))
      :rule-classes :congruence)

    Theorem: exec-remuw-of-feat-fix-feat

    (defthm exec-remuw-of-feat-fix-feat
      (equal (exec-remuw rd rs1 rs2 stat (feat-fix feat))
             (exec-remuw rd rs1 rs2 stat feat)))

    Theorem: exec-remuw-feat-equiv-congruence-on-feat

    (defthm exec-remuw-feat-equiv-congruence-on-feat
      (implies (feat-equiv feat feat-equiv)
               (equal (exec-remuw rd rs1 rs2 stat feat)
                      (exec-remuw rd rs1 rs2 stat feat-equiv)))
      :rule-classes :congruence)