• Top
    • Documentation
    • Books
    • Boolean-reasoning
      • Ipasir
      • Aignet
      • Aig
      • Satlink
      • Truth
      • Ubdds
      • Bdd
      • Faig
      • Bed
      • 4v
        • 4v-sexprs
          • 4v-sexpr-vars
          • 4v-sexpr-eval
          • 4v-sexpr-to-faig
          • 4v-sexpr-restrict-with-rw
          • 4vs-constructors
          • 4v-sexpr-compose-with-rw
          • 4v-sexpr-restrict
          • 4v-sexpr-alist-extract
          • 4v-sexpr-compose
          • 4v-nsexpr-p
          • 4v-sexpr-purebool-p
          • 4v-sexpr-<=
          • Sfaig
          • Sexpr-equivs
            • 4v-sexpr-alist-equiv
            • 4v-env-equiv
            • 4v-sexpr-list-equiv
            • 4v-sexpr-equiv
            • 4v-alists-agree
            • Key-and-env-equiv
            • 4v-sexpr-alist-equiv-alt
            • 4v-sexpr-alist-pair-equiv
            • 4v-cdr-consp-equiv
            • 4v-cdr-equiv
            • 3v-syntax-sexprp
            • Sexpr-rewriting
            • 4v-sexpr-ind
            • 4v-alist-extract
          • 4v-monotonicity
          • 4v-operations
          • Why-4v-logic
          • 4v-<=
          • 4vp
          • 4vcases
          • 4v-fix
          • 4v-lookup
      • Projects
      • Debugging
      • Std
      • Proof-automation
      • Community
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Sexpr-equivs

    4v-cdr-equiv

    Weaker version of element equivalence for four-valued alists.

    This is a universal equivalence, introduced using def-universal-equiv.

    Function: 4v-cdr-equiv

    (defun 4v-cdr-equiv (x y)
      (and (4v-equiv (cdr x) (cdr y))))

    Definitions and Theorems

    Function: 4v-cdr-equiv

    (defun 4v-cdr-equiv (x y)
      (and (4v-equiv (cdr x) (cdr y))))

    Theorem: 4v-cdr-equiv-is-an-equivalence

    (defthm 4v-cdr-equiv-is-an-equivalence
      (and (booleanp (4v-cdr-equiv x y))
           (4v-cdr-equiv x x)
           (implies (4v-cdr-equiv x y)
                    (4v-cdr-equiv y x))
           (implies (and (4v-cdr-equiv x y)
                         (4v-cdr-equiv y z))
                    (4v-cdr-equiv x z)))
      :rule-classes (:equivalence))

    Theorem: 4v-cdr-equiv-implies-4v-equiv-cdr-1

    (defthm 4v-cdr-equiv-implies-4v-equiv-cdr-1
      (implies (4v-cdr-equiv x x-equiv)
               (4v-equiv (cdr x) (cdr x-equiv)))
      :rule-classes (:congruence))