• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
      • Apt
      • Zfc
      • Acre
      • Milawa
      • Smtlink
      • Abnf
      • Vwsim
      • Isar
      • Wp-gen
      • Dimacs-reader
      • Pfcs
        • Proof-support
        • Abstract-syntax
          • Syntax-abstraction
          • Expression
          • Definition
          • Constraint
            • Constraint-fix
              • Constraint-case
              • Constraintp
              • Constraint-equiv
              • Constraint-relation
              • Constraint-equal
              • Constraint-kind
            • Definition-option
            • Abstract-syntax-operations
            • System
            • Convenience-constructors
            • System-result
            • Expression-result
            • Expression-list-result
            • Definition-result
            • Definition-list-result
            • Constraint-result
            • Constraint-list-result
            • Expression-list
            • Definition-list
            • Constraint-list
          • R1cs-subset
          • Semantics
          • Abstract-syntax-operations
          • Indexed-names
          • Well-formedness
          • Concrete-syntax
          • R1cs-bridge
          • Parser-interface
        • Legacy-defrstobj
        • Proof-checker-array
        • Soft
        • C
        • Farray
        • Rp-rewriter
        • Instant-runoff-voting
        • Imp-language
        • Sidekick
        • Leftist-trees
        • Java
        • Taspi
        • Bitcoin
        • Riscv
        • Des
        • Ethereum
        • X86isa
        • Sha-2
        • Yul
        • Zcash
        • Proof-checker-itp13
        • Regex
        • ACL2-programming-language
        • Json
        • Jfkr
        • Equational
        • Cryptography
        • Poseidon
        • Where-do-i-place-my-book
        • Axe
        • Bigmems
        • Builtins
        • Execloader
        • Aleo
        • Solidity
        • Paco
        • Concurrent-programs
        • Bls12-377-curves
      • Debugging
      • Std
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Constraint

    Constraint-fix

    Fixing function for constraint structures.

    Signature
    (constraint-fix x) → new-x
    Arguments
    x — Guard (constraintp x).
    Returns
    new-x — Type (constraintp new-x).

    Definitions and Theorems

    Function: constraint-fix$inline

    (defun constraint-fix$inline (x)
     (declare (xargs :guard (constraintp x)))
     (let ((__function__ 'constraint-fix))
      (declare (ignorable __function__))
      (mbe
       :logic
       (case (constraint-kind x)
         (:equal (b* ((left (expression-fix (std::da-nth 0 (cdr x))))
                      (right (expression-fix (std::da-nth 1 (cdr x)))))
                   (cons :equal (list left right))))
         (:relation
              (b* ((name (str-fix (std::da-nth 0 (cdr x))))
                   (args (expression-list-fix (std::da-nth 1 (cdr x)))))
                (cons :relation (list name args)))))
       :exec x)))

    Theorem: constraintp-of-constraint-fix

    (defthm constraintp-of-constraint-fix
      (b* ((new-x (constraint-fix$inline x)))
        (constraintp new-x))
      :rule-classes :rewrite)

    Theorem: constraint-fix-when-constraintp

    (defthm constraint-fix-when-constraintp
      (implies (constraintp x)
               (equal (constraint-fix x) x)))

    Function: constraint-equiv$inline

    (defun constraint-equiv$inline (acl2::x acl2::y)
      (declare (xargs :guard (and (constraintp acl2::x)
                                  (constraintp acl2::y))))
      (equal (constraint-fix acl2::x)
             (constraint-fix acl2::y)))

    Theorem: constraint-equiv-is-an-equivalence

    (defthm constraint-equiv-is-an-equivalence
      (and (booleanp (constraint-equiv x y))
           (constraint-equiv x x)
           (implies (constraint-equiv x y)
                    (constraint-equiv y x))
           (implies (and (constraint-equiv x y)
                         (constraint-equiv y z))
                    (constraint-equiv x z)))
      :rule-classes (:equivalence))

    Theorem: constraint-equiv-implies-equal-constraint-fix-1

    (defthm constraint-equiv-implies-equal-constraint-fix-1
      (implies (constraint-equiv acl2::x x-equiv)
               (equal (constraint-fix acl2::x)
                      (constraint-fix x-equiv)))
      :rule-classes (:congruence))

    Theorem: constraint-fix-under-constraint-equiv

    (defthm constraint-fix-under-constraint-equiv
      (constraint-equiv (constraint-fix acl2::x)
                        acl2::x)
      :rule-classes (:rewrite :rewrite-quoted-constant))

    Theorem: equal-of-constraint-fix-1-forward-to-constraint-equiv

    (defthm equal-of-constraint-fix-1-forward-to-constraint-equiv
      (implies (equal (constraint-fix acl2::x) acl2::y)
               (constraint-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: equal-of-constraint-fix-2-forward-to-constraint-equiv

    (defthm equal-of-constraint-fix-2-forward-to-constraint-equiv
      (implies (equal acl2::x (constraint-fix acl2::y))
               (constraint-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: constraint-equiv-of-constraint-fix-1-forward

    (defthm constraint-equiv-of-constraint-fix-1-forward
      (implies (constraint-equiv (constraint-fix acl2::x)
                                 acl2::y)
               (constraint-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: constraint-equiv-of-constraint-fix-2-forward

    (defthm constraint-equiv-of-constraint-fix-2-forward
      (implies (constraint-equiv acl2::x (constraint-fix acl2::y))
               (constraint-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: constraint-kind$inline-of-constraint-fix-x

    (defthm constraint-kind$inline-of-constraint-fix-x
      (equal (constraint-kind$inline (constraint-fix x))
             (constraint-kind$inline x)))

    Theorem: constraint-kind$inline-constraint-equiv-congruence-on-x

    (defthm constraint-kind$inline-constraint-equiv-congruence-on-x
      (implies (constraint-equiv x x-equiv)
               (equal (constraint-kind$inline x)
                      (constraint-kind$inline x-equiv)))
      :rule-classes :congruence)

    Theorem: consp-of-constraint-fix

    (defthm consp-of-constraint-fix
      (consp (constraint-fix x))
      :rule-classes :type-prescription)