• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
      • Apt
      • Zfc
      • Acre
      • Milawa
      • Smtlink
      • Abnf
      • Vwsim
      • Isar
      • Wp-gen
      • Dimacs-reader
      • Pfcs
      • Legacy-defrstobj
      • Proof-checker-array
      • Soft
      • C
      • Farray
      • Rp-rewriter
      • Instant-runoff-voting
      • Imp-language
        • Semantics
          • Step
          • Write-var
          • Outcome
            • Outcome-case
            • Outcome-fix
              • Outcome-equiv
              • Outcome-terminated
              • Outcomep
              • Outcome-nonterminating
              • Outcome-kind
            • Beval
            • Read-var
            • Config
            • Terminatingp
            • Aeval
            • Step*
            • Stepn
            • Env
          • Abstract-syntax
          • Interpreter
        • Sidekick
        • Leftist-trees
        • Java
        • Taspi
        • Bitcoin
        • Riscv
        • Des
        • Ethereum
        • X86isa
        • Sha-2
        • Yul
        • Zcash
        • Proof-checker-itp13
        • Regex
        • ACL2-programming-language
        • Json
        • Jfkr
        • Equational
        • Cryptography
        • Poseidon
        • Where-do-i-place-my-book
        • Axe
        • Bigmems
        • Builtins
        • Execloader
        • Aleo
        • Solidity
        • Paco
        • Concurrent-programs
        • Bls12-377-curves
      • Debugging
      • Std
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Outcome

    Outcome-fix

    Fixing function for outcome structures.

    Signature
    (outcome-fix x) → new-x
    Arguments
    x — Guard (outcomep x).
    Returns
    new-x — Type (outcomep new-x).

    Definitions and Theorems

    Function: outcome-fix$inline

    (defun outcome-fix$inline (x)
     (declare (xargs :guard (outcomep x)))
     (let ((__function__ 'outcome-fix))
       (declare (ignorable __function__))
       (mbe :logic
            (case (outcome-kind x)
              (:terminated (b* ((env (env-fix (std::da-nth 0 (cdr x)))))
                             (cons :terminated (list env))))
              (:nonterminating (cons :nonterminating (list))))
            :exec x)))

    Theorem: outcomep-of-outcome-fix

    (defthm outcomep-of-outcome-fix
      (b* ((new-x (outcome-fix$inline x)))
        (outcomep new-x))
      :rule-classes :rewrite)

    Theorem: outcome-fix-when-outcomep

    (defthm outcome-fix-when-outcomep
      (implies (outcomep x)
               (equal (outcome-fix x) x)))

    Function: outcome-equiv$inline

    (defun outcome-equiv$inline (acl2::x acl2::y)
      (declare (xargs :guard (and (outcomep acl2::x)
                                  (outcomep acl2::y))))
      (equal (outcome-fix acl2::x)
             (outcome-fix acl2::y)))

    Theorem: outcome-equiv-is-an-equivalence

    (defthm outcome-equiv-is-an-equivalence
      (and (booleanp (outcome-equiv x y))
           (outcome-equiv x x)
           (implies (outcome-equiv x y)
                    (outcome-equiv y x))
           (implies (and (outcome-equiv x y)
                         (outcome-equiv y z))
                    (outcome-equiv x z)))
      :rule-classes (:equivalence))

    Theorem: outcome-equiv-implies-equal-outcome-fix-1

    (defthm outcome-equiv-implies-equal-outcome-fix-1
      (implies (outcome-equiv acl2::x x-equiv)
               (equal (outcome-fix acl2::x)
                      (outcome-fix x-equiv)))
      :rule-classes (:congruence))

    Theorem: outcome-fix-under-outcome-equiv

    (defthm outcome-fix-under-outcome-equiv
      (outcome-equiv (outcome-fix acl2::x)
                     acl2::x)
      :rule-classes (:rewrite :rewrite-quoted-constant))

    Theorem: equal-of-outcome-fix-1-forward-to-outcome-equiv

    (defthm equal-of-outcome-fix-1-forward-to-outcome-equiv
      (implies (equal (outcome-fix acl2::x) acl2::y)
               (outcome-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: equal-of-outcome-fix-2-forward-to-outcome-equiv

    (defthm equal-of-outcome-fix-2-forward-to-outcome-equiv
      (implies (equal acl2::x (outcome-fix acl2::y))
               (outcome-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: outcome-equiv-of-outcome-fix-1-forward

    (defthm outcome-equiv-of-outcome-fix-1-forward
      (implies (outcome-equiv (outcome-fix acl2::x)
                              acl2::y)
               (outcome-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: outcome-equiv-of-outcome-fix-2-forward

    (defthm outcome-equiv-of-outcome-fix-2-forward
      (implies (outcome-equiv acl2::x (outcome-fix acl2::y))
               (outcome-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: outcome-kind$inline-of-outcome-fix-x

    (defthm outcome-kind$inline-of-outcome-fix-x
      (equal (outcome-kind$inline (outcome-fix x))
             (outcome-kind$inline x)))

    Theorem: outcome-kind$inline-outcome-equiv-congruence-on-x

    (defthm outcome-kind$inline-outcome-equiv-congruence-on-x
      (implies (outcome-equiv x x-equiv)
               (equal (outcome-kind$inline x)
                      (outcome-kind$inline x-equiv)))
      :rule-classes :congruence)

    Theorem: consp-of-outcome-fix

    (defthm consp-of-outcome-fix
      (consp (outcome-fix x))
      :rule-classes :type-prescription)