• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
      • Gl
      • Esim
      • Vl2014
        • Warnings
        • Primitives
        • Use-set
        • Syntax
        • Getting-started
        • Utilities
        • Loader
        • Transforms
          • Expression-sizing
          • Occform
          • Oprewrite
          • Expand-functions
          • Delayredux
          • Unparameterization
          • Caseelim
          • Split
          • Selresolve
          • Weirdint-elim
          • Vl-delta
            • Vl-delta-p
            • Vl-delta-fix
            • Make-vl-delta
            • Vl-delta-equiv
              • Change-vl-delta
              • Vl-delta->warnings
              • Vl-delta->vardecls
              • Vl-delta->modinsts
              • Vl-delta->gateinsts
              • Vl-delta->assigns
              • Vl-delta->addmods
              • Vl-delta->nf
            • Replicate-insts
            • Rangeresolve
            • Propagate
            • Clean-selects
            • Clean-params
            • Blankargs
            • Inline-mods
            • Expr-simp
            • Trunc
            • Always-top
            • Gatesplit
            • Gate-elim
            • Expression-optimization
            • Elim-supplies
            • Wildelim
            • Drop-blankports
            • Clean-warnings
            • Addinstnames
            • Custom-transform-hooks
            • Annotate
            • Latchcode
            • Elim-unused-vars
            • Problem-modules
          • Lint
          • Mlib
          • Server
          • Kit
          • Printer
          • Esim-vl
          • Well-formedness
        • Sv
        • Fgl
        • Vwsim
        • Vl
        • X86isa
        • Svl
        • Rtl
      • Software-verification
      • Math
      • Testing-utilities
    • Vl-delta

    Vl-delta-equiv

    Basic equivalence relation for vl-delta structures.

    Definitions and Theorems

    Function: vl-delta-equiv$inline

    (defun vl-delta-equiv$inline (acl2::x acl2::y)
      (declare (xargs :guard (and (vl-delta-p acl2::x)
                                  (vl-delta-p acl2::y))))
      (equal (vl-delta-fix acl2::x)
             (vl-delta-fix acl2::y)))

    Theorem: vl-delta-equiv-is-an-equivalence

    (defthm vl-delta-equiv-is-an-equivalence
      (and (booleanp (vl-delta-equiv x y))
           (vl-delta-equiv x x)
           (implies (vl-delta-equiv x y)
                    (vl-delta-equiv y x))
           (implies (and (vl-delta-equiv x y)
                         (vl-delta-equiv y z))
                    (vl-delta-equiv x z)))
      :rule-classes (:equivalence))

    Theorem: vl-delta-equiv-implies-equal-vl-delta-fix-1

    (defthm vl-delta-equiv-implies-equal-vl-delta-fix-1
      (implies (vl-delta-equiv acl2::x x-equiv)
               (equal (vl-delta-fix acl2::x)
                      (vl-delta-fix x-equiv)))
      :rule-classes (:congruence))

    Theorem: vl-delta-fix-under-vl-delta-equiv

    (defthm vl-delta-fix-under-vl-delta-equiv
      (vl-delta-equiv (vl-delta-fix acl2::x)
                      acl2::x)
      :rule-classes (:rewrite :rewrite-quoted-constant))

    Theorem: equal-of-vl-delta-fix-1-forward-to-vl-delta-equiv

    (defthm equal-of-vl-delta-fix-1-forward-to-vl-delta-equiv
      (implies (equal (vl-delta-fix acl2::x) acl2::y)
               (vl-delta-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: equal-of-vl-delta-fix-2-forward-to-vl-delta-equiv

    (defthm equal-of-vl-delta-fix-2-forward-to-vl-delta-equiv
      (implies (equal acl2::x (vl-delta-fix acl2::y))
               (vl-delta-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: vl-delta-equiv-of-vl-delta-fix-1-forward

    (defthm vl-delta-equiv-of-vl-delta-fix-1-forward
      (implies (vl-delta-equiv (vl-delta-fix acl2::x)
                               acl2::y)
               (vl-delta-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: vl-delta-equiv-of-vl-delta-fix-2-forward

    (defthm vl-delta-equiv-of-vl-delta-fix-2-forward
      (implies (vl-delta-equiv acl2::x (vl-delta-fix acl2::y))
               (vl-delta-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)