• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
      • Gl
      • Esim
      • Vl2014
      • Sv
      • Fgl
      • Vwsim
      • Vl
        • Syntax
        • Loader
        • Warnings
        • Getting-started
        • Utilities
        • Printer
        • Kit
        • Mlib
          • Scopestack
          • Hid-tools
            • Vl-follow-hidexpr
            • Vl-index-expr-typetrace
            • Vl-follow-scopeexpr
            • Vl-follow-hidexpr-dimscheck
            • Vl-datatype-resolve-selects
            • Vl-datatype-remove-dim
            • Vl-operandinfo
            • Vl-follow-hidexpr-dimcheck
            • Vl-follow-data-selects
            • Vl-follow-hidexpr-error
            • Vl-hidstep
            • Vl-scopestack-find-item/ss/path
            • Vl-follow-array-indices
            • Vl-scopecontext
            • Vl-datatype-set-unsigned
            • Vl-selstep
            • Vl-scopestack-find-elabpath
            • Vl-hid-prefix-for-subhid
            • Vl-find-structmember
            • Vl-select
            • Vl-scopeexpr-replace-hid
            • Vl-genblocklist-find-block
            • Vl-partselect-width
            • Vl-seltrace->indices
            • Vl-datatype->structmembers
            • Vl-hidexpr-resolved-p
            • Vl-operandinfo->indices
            • Vl-flatten-hidindex
            • Vl-subhid-p
            • Vl-seltrace-usertypes-ok
            • Vl-flatten-hidexpr
            • Vl-scopeexpr->hid
            • Vl-seltrace-index-count
            • Vl-operandinfo-usertypes-ok
            • Vl-operandinfo-index-count
            • Vl-datatype-dims-count
            • Vl-scopeexpr-index-count
            • Vl-hidexpr-index-count
            • Vl-usertype-lookup
            • Vl-hidindex-resolved-p
            • Vl-scopeexpr-resolved-p
            • Vl-selstep-usertypes-ok
            • Vl-hidtrace
            • Vl-seltrace
              • Vl-seltrace-fix
                • Vl-seltrace-equiv
                • Vl-seltrace-p
              • Vl-scopedef-interface-p
            • Filtering-by-name
            • Vl-interface-mocktype
            • Stripping-functions
            • Genblob
            • Expr-tools
            • Extract-vl-types
            • Hierarchy
            • Range-tools
            • Finding-by-name
            • Stmt-tools
            • Modnamespace
            • Flat-warnings
            • Reordering-by-name
            • Datatype-tools
            • Syscalls
            • Allexprs
            • Lvalues
            • Port-tools
          • Transforms
        • X86isa
        • Svl
        • Rtl
      • Software-verification
      • Math
      • Testing-utilities
    • Vl-seltrace

    Vl-seltrace-fix

    (vl-seltrace-fix x) is a usual fty list fixing function.

    Signature
    (vl-seltrace-fix x) → fty::newx
    Arguments
    x — Guard (vl-seltrace-p x).
    Returns
    fty::newx — Type (vl-seltrace-p fty::newx).

    In the logic, we apply vl-selstep-fix to each member of the x. In the execution, none of that is actually necessary and this is just an inlined identity function.

    Definitions and Theorems

    Function: vl-seltrace-fix$inline

    (defun vl-seltrace-fix$inline (x)
      (declare (xargs :guard (vl-seltrace-p x)))
      (let ((__function__ 'vl-seltrace-fix))
        (declare (ignorable __function__))
        (mbe :logic
             (if (atom x)
                 x
               (cons (vl-selstep-fix (car x))
                     (vl-seltrace-fix (cdr x))))
             :exec x)))

    Theorem: vl-seltrace-p-of-vl-seltrace-fix

    (defthm vl-seltrace-p-of-vl-seltrace-fix
      (b* ((fty::newx (vl-seltrace-fix$inline x)))
        (vl-seltrace-p fty::newx))
      :rule-classes :rewrite)

    Theorem: vl-seltrace-fix-when-vl-seltrace-p

    (defthm vl-seltrace-fix-when-vl-seltrace-p
      (implies (vl-seltrace-p x)
               (equal (vl-seltrace-fix x) x)))

    Function: vl-seltrace-equiv$inline

    (defun vl-seltrace-equiv$inline (acl2::x acl2::y)
      (declare (xargs :guard (and (vl-seltrace-p acl2::x)
                                  (vl-seltrace-p acl2::y))))
      (equal (vl-seltrace-fix acl2::x)
             (vl-seltrace-fix acl2::y)))

    Theorem: vl-seltrace-equiv-is-an-equivalence

    (defthm vl-seltrace-equiv-is-an-equivalence
      (and (booleanp (vl-seltrace-equiv x y))
           (vl-seltrace-equiv x x)
           (implies (vl-seltrace-equiv x y)
                    (vl-seltrace-equiv y x))
           (implies (and (vl-seltrace-equiv x y)
                         (vl-seltrace-equiv y z))
                    (vl-seltrace-equiv x z)))
      :rule-classes (:equivalence))

    Theorem: vl-seltrace-equiv-implies-equal-vl-seltrace-fix-1

    (defthm vl-seltrace-equiv-implies-equal-vl-seltrace-fix-1
      (implies (vl-seltrace-equiv acl2::x x-equiv)
               (equal (vl-seltrace-fix acl2::x)
                      (vl-seltrace-fix x-equiv)))
      :rule-classes (:congruence))

    Theorem: vl-seltrace-fix-under-vl-seltrace-equiv

    (defthm vl-seltrace-fix-under-vl-seltrace-equiv
      (vl-seltrace-equiv (vl-seltrace-fix acl2::x)
                         acl2::x)
      :rule-classes (:rewrite :rewrite-quoted-constant))

    Theorem: equal-of-vl-seltrace-fix-1-forward-to-vl-seltrace-equiv

    (defthm equal-of-vl-seltrace-fix-1-forward-to-vl-seltrace-equiv
      (implies (equal (vl-seltrace-fix acl2::x)
                      acl2::y)
               (vl-seltrace-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: equal-of-vl-seltrace-fix-2-forward-to-vl-seltrace-equiv

    (defthm equal-of-vl-seltrace-fix-2-forward-to-vl-seltrace-equiv
      (implies (equal acl2::x (vl-seltrace-fix acl2::y))
               (vl-seltrace-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: vl-seltrace-equiv-of-vl-seltrace-fix-1-forward

    (defthm vl-seltrace-equiv-of-vl-seltrace-fix-1-forward
      (implies (vl-seltrace-equiv (vl-seltrace-fix acl2::x)
                                  acl2::y)
               (vl-seltrace-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: vl-seltrace-equiv-of-vl-seltrace-fix-2-forward

    (defthm vl-seltrace-equiv-of-vl-seltrace-fix-2-forward
      (implies (vl-seltrace-equiv acl2::x (vl-seltrace-fix acl2::y))
               (vl-seltrace-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: car-of-vl-seltrace-fix-x-under-vl-selstep-equiv

    (defthm car-of-vl-seltrace-fix-x-under-vl-selstep-equiv
      (vl-selstep-equiv (car (vl-seltrace-fix acl2::x))
                        (car acl2::x)))

    Theorem: car-vl-seltrace-equiv-congruence-on-x-under-vl-selstep-equiv

    (defthm car-vl-seltrace-equiv-congruence-on-x-under-vl-selstep-equiv
      (implies (vl-seltrace-equiv acl2::x x-equiv)
               (vl-selstep-equiv (car acl2::x)
                                 (car x-equiv)))
      :rule-classes :congruence)

    Theorem: cdr-of-vl-seltrace-fix-x-under-vl-seltrace-equiv

    (defthm cdr-of-vl-seltrace-fix-x-under-vl-seltrace-equiv
      (vl-seltrace-equiv (cdr (vl-seltrace-fix acl2::x))
                         (cdr acl2::x)))

    Theorem: cdr-vl-seltrace-equiv-congruence-on-x-under-vl-seltrace-equiv

    (defthm
          cdr-vl-seltrace-equiv-congruence-on-x-under-vl-seltrace-equiv
      (implies (vl-seltrace-equiv acl2::x x-equiv)
               (vl-seltrace-equiv (cdr acl2::x)
                                  (cdr x-equiv)))
      :rule-classes :congruence)

    Theorem: cons-of-vl-selstep-fix-x-under-vl-seltrace-equiv

    (defthm cons-of-vl-selstep-fix-x-under-vl-seltrace-equiv
      (vl-seltrace-equiv (cons (vl-selstep-fix acl2::x) acl2::y)
                         (cons acl2::x acl2::y)))

    Theorem: cons-vl-selstep-equiv-congruence-on-x-under-vl-seltrace-equiv

    (defthm
          cons-vl-selstep-equiv-congruence-on-x-under-vl-seltrace-equiv
      (implies (vl-selstep-equiv acl2::x x-equiv)
               (vl-seltrace-equiv (cons acl2::x acl2::y)
                                  (cons x-equiv acl2::y)))
      :rule-classes :congruence)

    Theorem: cons-of-vl-seltrace-fix-y-under-vl-seltrace-equiv

    (defthm cons-of-vl-seltrace-fix-y-under-vl-seltrace-equiv
      (vl-seltrace-equiv (cons acl2::x (vl-seltrace-fix acl2::y))
                         (cons acl2::x acl2::y)))

    Theorem: cons-vl-seltrace-equiv-congruence-on-y-under-vl-seltrace-equiv

    (defthm
         cons-vl-seltrace-equiv-congruence-on-y-under-vl-seltrace-equiv
      (implies (vl-seltrace-equiv acl2::y y-equiv)
               (vl-seltrace-equiv (cons acl2::x acl2::y)
                                  (cons acl2::x y-equiv)))
      :rule-classes :congruence)

    Theorem: consp-of-vl-seltrace-fix

    (defthm consp-of-vl-seltrace-fix
      (equal (consp (vl-seltrace-fix acl2::x))
             (consp acl2::x)))

    Theorem: vl-seltrace-fix-of-cons

    (defthm vl-seltrace-fix-of-cons
      (equal (vl-seltrace-fix (cons a x))
             (cons (vl-selstep-fix a)
                   (vl-seltrace-fix x))))

    Theorem: len-of-vl-seltrace-fix

    (defthm len-of-vl-seltrace-fix
      (equal (len (vl-seltrace-fix acl2::x))
             (len acl2::x)))

    Theorem: vl-seltrace-fix-of-append

    (defthm vl-seltrace-fix-of-append
      (equal (vl-seltrace-fix (append std::a std::b))
             (append (vl-seltrace-fix std::a)
                     (vl-seltrace-fix std::b))))

    Theorem: vl-seltrace-fix-of-repeat

    (defthm vl-seltrace-fix-of-repeat
      (equal (vl-seltrace-fix (repeat acl2::n acl2::x))
             (repeat acl2::n (vl-selstep-fix acl2::x))))

    Theorem: nth-of-vl-seltrace-fix

    (defthm nth-of-vl-seltrace-fix
      (equal (nth acl2::n (vl-seltrace-fix acl2::x))
             (if (< (nfix acl2::n) (len acl2::x))
                 (vl-selstep-fix (nth acl2::n acl2::x))
               nil)))

    Theorem: vl-seltrace-equiv-implies-vl-seltrace-equiv-append-1

    (defthm vl-seltrace-equiv-implies-vl-seltrace-equiv-append-1
      (implies (vl-seltrace-equiv acl2::x fty::x-equiv)
               (vl-seltrace-equiv (append acl2::x acl2::y)
                                  (append fty::x-equiv acl2::y)))
      :rule-classes (:congruence))

    Theorem: vl-seltrace-equiv-implies-vl-seltrace-equiv-append-2

    (defthm vl-seltrace-equiv-implies-vl-seltrace-equiv-append-2
      (implies (vl-seltrace-equiv acl2::y fty::y-equiv)
               (vl-seltrace-equiv (append acl2::x acl2::y)
                                  (append acl2::x fty::y-equiv)))
      :rule-classes (:congruence))

    Theorem: vl-seltrace-equiv-implies-vl-seltrace-equiv-nthcdr-2

    (defthm vl-seltrace-equiv-implies-vl-seltrace-equiv-nthcdr-2
      (implies (vl-seltrace-equiv acl2::l l-equiv)
               (vl-seltrace-equiv (nthcdr acl2::n acl2::l)
                                  (nthcdr acl2::n l-equiv)))
      :rule-classes (:congruence))

    Theorem: vl-seltrace-equiv-implies-vl-seltrace-equiv-take-2

    (defthm vl-seltrace-equiv-implies-vl-seltrace-equiv-take-2
      (implies (vl-seltrace-equiv acl2::l l-equiv)
               (vl-seltrace-equiv (take acl2::n acl2::l)
                                  (take acl2::n l-equiv)))
      :rule-classes (:congruence))