• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
    • Software-verification
      • Kestrel-books
        • Crypto-hdwallet
        • Apt
        • Error-checking
        • Fty-extensions
        • Isar
        • Kestrel-utilities
        • Set
        • Soft
        • C
        • Bv
        • Imp-language
        • Event-macros
        • Java
        • Bitcoin
        • Ethereum
        • Yul
        • Zcash
        • ACL2-programming-language
        • Prime-fields
        • Json
          • Parser-output-to-values
          • Values
            • Value/valuelist/member/memberlist
              • Value
              • Member
                • Member-equiv
                  • Make-member
                  • Change-member
                  • Member->value
                  • Member->name
                  • Memberp
                  • Member-fix
                  • Member-count
                • Value-list
                • Member-list
              • Value-option
              • Irr-value
              • Irr-member
            • Syntax
            • Patbind-pattern
            • Operations
          • Syntheto
          • File-io-light
          • Cryptography
          • Number-theory
          • Lists-light
          • Axe
          • Builtins
          • Solidity
          • Helpers
          • Htclient
          • Typed-lists-light
          • Arithmetic-light
        • X86isa
        • Axe
        • Execloader
      • Math
      • Testing-utilities
    • Member

    Member-equiv

    Basic equivalence relation for member structures.

    Definitions and Theorems

    Function: member-equiv$inline

    (defun member-equiv$inline (acl2::x acl2::y)
      (declare (xargs :guard (and (memberp acl2::x)
                                  (memberp acl2::y))))
      (equal (member-fix acl2::x)
             (member-fix acl2::y)))

    Theorem: member-equiv-is-an-equivalence

    (defthm member-equiv-is-an-equivalence
      (and (booleanp (member-equiv x y))
           (member-equiv x x)
           (implies (member-equiv x y)
                    (member-equiv y x))
           (implies (and (member-equiv x y)
                         (member-equiv y z))
                    (member-equiv x z)))
      :rule-classes (:equivalence))

    Theorem: member-equiv-implies-equal-member-fix-1

    (defthm member-equiv-implies-equal-member-fix-1
      (implies (member-equiv acl2::x x-equiv)
               (equal (member-fix acl2::x)
                      (member-fix x-equiv)))
      :rule-classes (:congruence))

    Theorem: member-fix-under-member-equiv

    (defthm member-fix-under-member-equiv
      (member-equiv (member-fix acl2::x)
                    acl2::x)
      :rule-classes (:rewrite :rewrite-quoted-constant))

    Theorem: equal-of-member-fix-1-forward-to-member-equiv

    (defthm equal-of-member-fix-1-forward-to-member-equiv
      (implies (equal (member-fix acl2::x) acl2::y)
               (member-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: equal-of-member-fix-2-forward-to-member-equiv

    (defthm equal-of-member-fix-2-forward-to-member-equiv
      (implies (equal acl2::x (member-fix acl2::y))
               (member-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: member-equiv-of-member-fix-1-forward

    (defthm member-equiv-of-member-fix-1-forward
      (implies (member-equiv (member-fix acl2::x)
                             acl2::y)
               (member-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: member-equiv-of-member-fix-2-forward

    (defthm member-equiv-of-member-fix-2-forward
      (implies (member-equiv acl2::x (member-fix acl2::y))
               (member-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)