• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
    • Software-verification
    • Math
      • 100-theorems
      • Arithmetic
      • Bit-vectors
        • Sparseint
        • Bitops
          • Bitops/merge
          • Bitops-compatibility
          • Bitops-books
          • Logbitp-reasoning
          • Bitops/signed-byte-p
          • Fast-part-select
          • Bitops/integer-length
          • Bitops/extra-defs
          • Install-bit
          • Trailing-0-count
          • Bitops/defaults
          • Logbitp-mismatch
          • Trailing-1-count
          • Bitops/rotate
          • Bitops/equal-by-logbitp
          • Bitops/ash-bounds
          • Bitops/fast-logrev
          • Limited-shifts
          • Bitops/part-select
          • Bitops/parity
          • Bitops/saturate
          • Bitops/part-install
          • Bitops/logbitp-bounds
            • Logbitp-bounds
            • Bitops/ihsext-basics
            • Bitops/fast-rotate
            • Bitops/fast-logext
            • Bitops/ihs-extensions
          • Bv
          • Ihs
          • Rtl
        • Algebra
      • Testing-utilities
    • Bitops/logbitp-bounds
    • Logbitp

    Logbitp-bounds

    Lemmas about inferring logbitp information from bounds expressed using expt and vice versa

    • (logbitp n x) => (<= (expt 2 n) x)
    • (logbitp n (expt 2 n)) = t
    • (<= (expt 2 n) x) and (< x (expt 2 (1+ n))) => (logbitp n x) and (not (logbitp (1+ n) x))

    Definitions and Theorems

    Theorem: logbitp-to-lower-bound

    (defthm logbitp-to-lower-bound
      (implies (and (logbitp n x) (natp n) (natp x))
               (<= (expt 2 n) x))
      :rule-classes (:linear :rewrite))

    Theorem: expt-2-n-to-logbitp

    (defthm expt-2-n-to-logbitp
      (implies (natp n)
               (logbitp n (expt 2 n))))

    Theorem: bounds-to-logbitp-lemma

    (defthm bounds-to-logbitp-lemma
      (implies (and (< (expt 2 n) x)
                    (< x (expt 2 (+ 1 n)))
                    (natp n)
                    (natp x))
               (logbitp n x)))

    Theorem: bounds-to-logbitp

    (defthm bounds-to-logbitp
      (implies (and (<= (expt 2 n) x)
                    (< x (expt 2 (+ 1 n)))
                    (natp n)
                    (natp x))
               (and (logbitp n x)
                    (not (logbitp (+ 1 n) x)))))