• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
    • Software-verification
    • Math
      • 100-theorems
      • Arithmetic
      • Bit-vectors
        • Sparseint
        • Bitops
        • Bv
        • Ihs
          • Logops-definitions
          • Math-lemmas
            • Prefer-*-to-/
            • ACL2-numberp-algebra
            • Integerp-+-minus-*
            • Rewrite-linear-equalities-to-iff
            • Ihs-math
            • Rationalp-algebra
            • Normalize-<-/-to-*-3
            • Expt-algebra
            • Cancel-equal-+-*
            • Normalize-<-/-to-*
            • Normalize-<-minus-/
            • Normalize-equal-/-to-*
            • Normalize-equal-0
            • Integerp-algebra
          • Ihs-theories
          • Ihs-init
          • Logops
        • Rtl
      • Algebra
    • Testing-utilities
  • Ihs

Math-lemmas

A book of theories about +, -, *, /, and EXPT, built on the arithmetic package of Matt Kaufmann.

Subtopics

Prefer-*-to-/
A small theory of lemmas that eliminate / in favor of *.
ACL2-numberp-algebra
A basic theory of algebra for all ACL2-numberps.
Integerp-+-minus-*
Rewrite: -i, i + j, i - j, and i * j are integers, when i and j are integers.
Rewrite-linear-equalities-to-iff
Rewrite: (EQUAL (< w x) (< y z)) → (IFF (< w x) (< y z)).
Ihs-math
The default theory of +, -, *, /, and EXPT for the IHS library.
Rationalp-algebra
A basic theory of algebra for all rationalps.
Normalize-<-/-to-*-3
Rewrite: Replace x < y/z and x > y/z with x*z < y or x*z > y, depending on the sign of z.
Expt-algebra
A theory of EXPT which is compatible with the ALGEBRA theories.
Cancel-equal-+-*
Rewrite: (equal (+ x y) x) and (equal (* x y) x); also commutative forms.
Normalize-<-/-to-*
Rewrite: Replace x < 1/y with x*y < 1 or x*y > 1, based on the sign of y.
Normalize-<-minus-/
Rewrite inequalities between 0 and negated or reciprocal terms, and (< (- x) (- y)).
Normalize-equal-/-to-*
Rewrite: Replace x = y/z with x*z = y.
Normalize-equal-0
Rewrite (equal (- x) 0), (equal (+ x y) 0), and (equal (* x y) 0).
Integerp-algebra
A basic theory of algebra for all INTEGERPs.