• Top
    • Documentation
    • Books
    • Boolean-reasoning
      • Ipasir
      • Aignet
        • Base-api
        • Aignet-construction
        • Representation
        • Aignet-copy-init
        • Aignet-simplify-with-tracking
        • Aignet-simplify-marked-with-tracking
        • Aignet-cnf
        • Aignet-simplify-marked
        • Aignet-complete-copy
        • Aignet-transforms
          • Aignet-output-ranges
          • Aignet-comb-transforms
            • Fraig
            • Parametrize
            • Observability-fix
            • Constprop
            • Apply-m-assumption-n-output-output-transform-default
            • Balance
            • Apply-n-output-comb-transform-default
            • Apply-comb-transform-default
            • Obs-constprop
            • Rewrite
            • Comb-transform
            • Abc-comb-simplify
            • Prune
            • Rewrite!
            • M-assumption-n-output-comb-transform->name
            • N-output-comb-transform->name
            • Comb-transform->name
            • N-output-comb-transformlist
            • M-assumption-n-output-comb-transformlist
            • Comb-transformlist
            • Apply-comb-transform
              • Apply-comb-transforms
                • Apply-comb-transform!
                • Apply-comb-transforms!
            • Aignet-m-assumption-n-output-transforms
            • Aignet-n-output-comb-transforms
          • Aignet-eval
          • Semantics
          • Aignet-read-aiger
          • Aignet-write-aiger
          • Aignet-abc-interface
          • Utilities
        • Aig
        • Satlink
        • Truth
        • Ubdds
        • Bdd
        • Faig
        • Bed
        • 4v
      • Projects
      • Debugging
      • Std
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Apply-comb-transform

    Apply-comb-transforms

    Signature
    (apply-comb-transforms aignet 
                           aignet2 transforms output-ranges state) 
     
      → 
    (mv new-aignet2 new-output-ranges new-state)
    Arguments
    output-ranges — Guard (aignet-output-range-map-p output-ranges).
    Returns
    new-output-ranges — Type (aignet-output-range-map-p new-output-ranges).

    Definitions and Theorems

    Function: apply-comb-transforms

    (defun apply-comb-transforms
           (aignet aignet2 transforms output-ranges state)
     (declare (xargs :stobjs (aignet aignet2 state)))
     (declare (xargs :guard (aignet-output-range-map-p output-ranges)))
     (declare (xargs :guard t))
     (let ((__function__ 'apply-comb-transforms))
      (declare (ignorable __function__))
      (prog2$
       (print-aignet-stats "Input" aignet)
       (time$
        (b* (((unless (consp transforms))
              (b* ((aignet2 (aignet-raw-copy aignet aignet2)))
                (mv aignet2
                    (aignet-output-range-map-fix output-ranges)
                    state))))
         (mbe
             :logic
             (non-exec (apply-comb-transforms!-core
                            aignet transforms output-ranges state))
             :exec
             (b* (((mv aignet2 output-ranges state)
                   (apply-comb-transform aignet aignet2 (car transforms)
                                         output-ranges state))
                  ((local-stobjs aignet3)
                   (mv aignet2 aignet3 output-ranges state)))
               (apply-comb-transforms-in-place
                    aignet2 aignet3 (cdr transforms)
                    output-ranges state))))
        :msg "All transforms: ~st seconds, ~sa bytes.~%"))))

    Theorem: aignet-output-range-map-p-of-apply-comb-transforms.new-output-ranges

    (defthm
     aignet-output-range-map-p-of-apply-comb-transforms.new-output-ranges
     (b* (((mv ?new-aignet2
               ?new-output-ranges ?new-state)
           (apply-comb-transforms aignet aignet2
                                  transforms output-ranges state)))
       (aignet-output-range-map-p new-output-ranges))
     :rule-classes :rewrite)

    Theorem: normalize-inputs-of-apply-comb-transforms

    (defthm normalize-inputs-of-apply-comb-transforms
     (b* nil
      (implies
       (syntaxp (not (equal aignet2 ''nil)))
       (equal
          (apply-comb-transforms aignet
                                 aignet2 transforms output-ranges state)
          (let ((aignet2 nil))
            (apply-comb-transforms aignet aignet2
                                   transforms output-ranges state))))))

    Theorem: num-ins-of-apply-comb-transforms

    (defthm num-ins-of-apply-comb-transforms
      (b* (((mv ?new-aignet2
                ?new-output-ranges ?new-state)
            (apply-comb-transforms aignet aignet2
                                   transforms output-ranges state)))
        (equal (stype-count :pi new-aignet2)
               (stype-count :pi aignet))))

    Theorem: num-outs-lower-bound-of-apply-comb-transforms

    (defthm num-outs-lower-bound-of-apply-comb-transforms
     (b* (((mv ?new-aignet2
               ?new-output-ranges ?new-state)
           (apply-comb-transforms aignet aignet2
                                  transforms output-ranges state)))
       (implies (<= (aignet-output-range-map-length output-ranges)
                    (stype-count :po aignet))
                (<= (aignet-output-range-map-length new-output-ranges)
                    (stype-count :po new-aignet2))))
     :rule-classes
     ((:linear
       :trigger-terms
       ((stype-count
           :po
           (mv-nth
                0
                (apply-comb-transforms aignet aignet2
                                       transforms output-ranges state)))
        (aignet-output-range-map-length
         (mv-nth
            1
            (apply-comb-transforms aignet aignet2
                                   transforms output-ranges state)))))))

    Theorem: apply-comb-transforms-comb-equiv

    (defthm apply-comb-transforms-comb-equiv
      (b* (((mv ?new-aignet2
                ?new-output-ranges ?new-state)
            (apply-comb-transforms aignet aignet2
                                   transforms output-ranges state)))
        (comb-equiv new-aignet2 aignet)))

    Theorem: num-regs-of-apply-comb-transforms

    (defthm num-regs-of-apply-comb-transforms
      (b* (((mv ?new-aignet2
                ?new-output-ranges ?new-state)
            (apply-comb-transforms aignet aignet2
                                   transforms output-ranges state)))
        (equal (stype-count :reg new-aignet2)
               (stype-count :reg aignet))))

    Theorem: num-outs-of-apply-comb-transforms

    (defthm num-outs-of-apply-comb-transforms
      (b* (((mv ?new-aignet2
                ?new-output-ranges ?new-state)
            (apply-comb-transforms aignet aignet2
                                   transforms output-ranges state)))
        (equal (stype-count :po new-aignet2)
               (stype-count :po aignet))))

    Theorem: w-state-of-apply-comb-transforms

    (defthm w-state-of-apply-comb-transforms
      (b* (((mv ?new-aignet2
                ?new-output-ranges ?new-state)
            (apply-comb-transforms aignet aignet2
                                   transforms output-ranges state)))
        (equal (w new-state) (w state))))

    Theorem: list-of-outputs-of-apply-comb-transforms

    (defthm list-of-outputs-of-apply-comb-transforms
      (b* (((mv ?new-aignet2
                ?new-output-ranges ?new-state)
            (apply-comb-transforms aignet aignet2
                                   transforms output-ranges state)))
        (equal (list new-aignet2 new-output-ranges new-state)
               (apply-comb-transforms aignet aignet2
                                      transforms output-ranges state))))