• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
      • Apt
      • Zfc
      • Acre
      • Milawa
      • Smtlink
      • Abnf
      • Vwsim
      • Isar
      • Wp-gen
      • Dimacs-reader
      • Pfcs
      • Legacy-defrstobj
      • Proof-checker-array
      • Soft
      • C
      • Farray
      • Rp-rewriter
      • Instant-runoff-voting
      • Imp-language
      • Sidekick
      • Leftist-trees
      • Java
      • Taspi
      • Bitcoin
      • Riscv
      • Des
      • Ethereum
      • X86isa
      • Sha-2
      • Yul
      • Zcash
      • Proof-checker-itp13
      • Regex
      • ACL2-programming-language
      • Json
      • Jfkr
      • Equational
      • Cryptography
        • R1cs
        • Interfaces
        • Sha-2
        • Keccak
        • Kdf
        • Mimc
        • Padding
        • Hmac
        • Elliptic-curves
          • Secp256k1-attachment
          • Twisted-edwards
          • Montgomery
          • Short-weierstrass-curves
          • Birational-montgomery-twisted-edwards
          • Has-square-root?-satisfies-pfield-squarep
          • Secp256k1
          • Secp256k1-domain-parameters
          • Secp256k1-types
          • Pfield-squarep
            • Prime-field-squares-euler-criterion
            • Pfield-odd-squarep
            • Pfield-even-squarep
              • Pfield-squarep-of-inv
            • Secp256k1-interface
            • Prime-field-extra-rules
            • Points
          • Attachments
          • Elliptic-curve-digital-signature-algorithm
        • Poseidon
        • Where-do-i-place-my-book
        • Axe
        • Bigmems
        • Builtins
        • Execloader
        • Aleo
        • Solidity
        • Paco
        • Concurrent-programs
        • Bls12-377-curves
      • Debugging
      • Std
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Pfield-squarep

    Pfield-even-squarep

    Check if a prime field element is a square of an even field element.

    Same as pfield-squarep except restricts the root to be even.

    Definitions and Theorems

    Theorem: pfield-even-squarep-suff

    (defthm pfield-even-squarep-suff
      (implies (and (fep r p)
                    (evenp r)
                    (equal (mul r r p) x))
               (pfield-even-squarep x p)))

    Theorem: booleanp-of-pfield-even-squarep

    (defthm booleanp-of-pfield-even-squarep
      (b* ((yes/no (pfield-even-squarep x p)))
        (booleanp yes/no))
      :rule-classes :rewrite)