• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
      • Apt
      • Zfc
      • Acre
      • Milawa
      • Smtlink
      • Abnf
      • Vwsim
      • Isar
      • Wp-gen
      • Dimacs-reader
      • Pfcs
      • Legacy-defrstobj
      • Proof-checker-array
      • Soft
      • C
      • Farray
      • Rp-rewriter
      • Instant-runoff-voting
      • Imp-language
      • Sidekick
      • Leftist-trees
      • Java
      • Taspi
      • Bitcoin
      • Riscv
      • Des
      • Ethereum
      • X86isa
      • Sha-2
      • Yul
      • Zcash
      • Proof-checker-itp13
      • Regex
      • ACL2-programming-language
      • Json
      • Jfkr
      • Equational
      • Cryptography
        • R1cs
        • Interfaces
        • Sha-2
        • Keccak
        • Kdf
        • Mimc
        • Padding
        • Hmac
        • Elliptic-curves
          • Secp256k1-attachment
          • Twisted-edwards
          • Montgomery
            • Montgomery-mul
            • Montgomery-add
            • Montgomery-point-orderp
            • Montgomery-add-commutativity
            • Montgomery-mul-distributivity-over-scalar-addition
            • Montgomery-add-associativity
            • Birational-montgomery-twisted-edwards
            • Montgomery-curve
              • Montgomery-curve-fix
              • Montgomery-curve-equiv
              • Make-montgomery-curve
              • Montgomery-curvep
              • Change-montgomery-curve
              • Montgomery-curve->b
              • Montgomery-curve->a
              • Montgomery-curve->p
            • Montgomery-mul-nonneg
            • Montgomery-not-point-with-x-minus1-when-a-minus-2-over-b-not-square
            • Point-on-montgomery-p
            • Montgomery-neg
            • Montgomery-sub
            • Montgomery-add-closure
            • Montgomery-only-point-with-y-0-when-aa-minus-4-non-square
            • Montgomery-point-order-leastp
            • Montgomery-distinct-x-when-nonzero-mul-in-order-range
            • Montgomery-add-inverse-uniqueness
            • Montgomery-distributivity-of-neg-over-add
            • Montgomery-mul-associativity
            • Montgomery-points-with-same-x-have-same-or-neg-y
            • Montgomery-zero
            • Montgomery-points-with-same-x-are-same-or-neg-point
            • Montgomery-mul-of-mod-order
            • Montgomery-neg-inverse
            • Montgomery-zero-identity
            • Point-on-montgomery-finite-when-not-zero
          • Short-weierstrass-curves
          • Birational-montgomery-twisted-edwards
          • Has-square-root?-satisfies-pfield-squarep
          • Secp256k1
          • Secp256k1-domain-parameters
          • Secp256k1-types
          • Pfield-squarep
          • Secp256k1-interface
          • Prime-field-extra-rules
          • Points
        • Attachments
        • Elliptic-curve-digital-signature-algorithm
      • Poseidon
      • Where-do-i-place-my-book
      • Axe
      • Bigmems
      • Builtins
      • Execloader
      • Aleo
      • Solidity
      • Paco
      • Concurrent-programs
      • Bls12-377-curves
    • Debugging
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
    • Software-verification
    • Math
    • Testing-utilities
  • Montgomery

Montgomery-curve

Fixtype of elliptic curve over prime fields in Montgomery form.

This is a product type introduced by fty::defprod.

Fields
p
a
b
Additional Requirements

The following invariant is enforced on the fields:

(and (dm::primep p) 
     (> p 2) 
     (fep a p) 
     (fep b p) 
     (not (equal a 2)) 
     (not (equal a (mod -2 p))) 
     (not (equal b 0))) 

This kind of curve is specified by the prime p and the coefficients A and B; see montgomery. Thus, we formalize a curve as a triple of these numbers, via a fixtype product.

We require p to be a prime greater than 2; see montgomery.

We require A and B to be in the prime field of p. We also require them to satisfy the condition montgomery.

To fix the three components to satisfy the requirements above, we pick 3 for p, 0 for A, and 1 for B.

Subtopics

Montgomery-curve-fix
Fixing function for montgomery-curve structures.
Montgomery-curve-equiv
Basic equivalence relation for montgomery-curve structures.
Make-montgomery-curve
Basic constructor macro for montgomery-curve structures.
Montgomery-curvep
Recognizer for montgomery-curve structures.
Change-montgomery-curve
Modifying constructor for montgomery-curve structures.
Montgomery-curve->b
Get the b field from a montgomery-curve.
Montgomery-curve->a
Get the a field from a montgomery-curve.
Montgomery-curve->p
Get the p field from a montgomery-curve.