• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
      • Apt
      • Zfc
      • Acre
      • Milawa
      • Smtlink
      • Abnf
      • Vwsim
      • Isar
      • Wp-gen
      • Dimacs-reader
      • Pfcs
      • Legacy-defrstobj
      • Proof-checker-array
      • Soft
      • C
      • Farray
      • Rp-rewriter
      • Instant-runoff-voting
      • Imp-language
      • Sidekick
      • Leftist-trees
      • Java
      • Taspi
      • Bitcoin
      • Riscv
      • Des
      • Ethereum
      • X86isa
      • Sha-2
      • Yul
      • Zcash
      • Proof-checker-itp13
      • Regex
      • ACL2-programming-language
      • Json
      • Jfkr
      • Equational
      • Cryptography
        • R1cs
        • Interfaces
        • Sha-2
        • Keccak
        • Kdf
        • Mimc
        • Padding
        • Hmac
        • Elliptic-curves
          • Secp256k1-attachment
          • Twisted-edwards
          • Montgomery
            • Montgomery-mul
            • Montgomery-add
            • Montgomery-point-orderp
            • Montgomery-add-commutativity
            • Montgomery-mul-distributivity-over-scalar-addition
            • Montgomery-add-associativity
            • Birational-montgomery-twisted-edwards
            • Montgomery-curve
            • Montgomery-mul-nonneg
            • Montgomery-not-point-with-x-minus1-when-a-minus-2-over-b-not-square
            • Point-on-montgomery-p
            • Montgomery-neg
            • Montgomery-sub
            • Montgomery-add-closure
            • Montgomery-only-point-with-y-0-when-aa-minus-4-non-square
            • Montgomery-point-order-leastp
            • Montgomery-distinct-x-when-nonzero-mul-in-order-range
            • Montgomery-add-inverse-uniqueness
            • Montgomery-distributivity-of-neg-over-add
            • Montgomery-mul-associativity
              • Montgomery-points-with-same-x-have-same-or-neg-y
              • Montgomery-zero
              • Montgomery-points-with-same-x-are-same-or-neg-point
              • Montgomery-mul-of-mod-order
              • Montgomery-neg-inverse
              • Montgomery-zero-identity
              • Point-on-montgomery-finite-when-not-zero
            • Short-weierstrass-curves
            • Birational-montgomery-twisted-edwards
            • Has-square-root?-satisfies-pfield-squarep
            • Secp256k1
            • Secp256k1-domain-parameters
            • Secp256k1-types
            • Pfield-squarep
            • Secp256k1-interface
            • Prime-field-extra-rules
            • Points
          • Attachments
          • Elliptic-curve-digital-signature-algorithm
        • Poseidon
        • Where-do-i-place-my-book
        • Axe
        • Bigmems
        • Builtins
        • Execloader
        • Aleo
        • Solidity
        • Paco
        • Concurrent-programs
        • Bls12-377-curves
      • Debugging
      • Std
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Montgomery

    Montgomery-mul-associativity

    Associativity of scalar multiplication.

    This involves heterogeneous entities, namely two scalars and a point. Multiplying the point by one scalar and the the other is equivalent to multiplying the scalars first and then the point.

    Definitions and Theorems

    Theorem: montgomery-mul-of-mul

    (defthm montgomery-mul-of-mul
      (implies
           (and (montgomery-add-closure)
                (montgomery-add-associativity)
                (point-on-montgomery-p point curve)
                (integerp scalar)
                (integerp scalar1))
           (equal (montgomery-mul scalar
                                  (montgomery-mul scalar1 point curve)
                                  curve)
                  (montgomery-mul (* scalar scalar1)
                                  point curve))))

    Theorem: montgomery-mul-of-mul-converse

    (defthm montgomery-mul-of-mul-converse
      (implies
           (and (montgomery-add-closure)
                (montgomery-add-associativity)
                (point-on-montgomery-p point curve)
                (integerp scalar)
                (integerp scalar1))
           (equal (montgomery-mul (* scalar scalar1)
                                  point curve)
                  (montgomery-mul scalar
                                  (montgomery-mul scalar1 point curve)
                                  curve))))