• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
      • Apt
      • Zfc
      • Acre
      • Milawa
      • Smtlink
      • Abnf
      • Vwsim
      • Isar
      • Wp-gen
      • Dimacs-reader
      • Pfcs
      • Legacy-defrstobj
      • Proof-checker-array
      • Soft
      • C
      • Farray
      • Rp-rewriter
      • Instant-runoff-voting
      • Imp-language
      • Sidekick
      • Leftist-trees
      • Java
      • Taspi
      • Bitcoin
      • Riscv
      • Des
      • Ethereum
      • X86isa
      • Sha-2
      • Yul
      • Zcash
      • Proof-checker-itp13
      • Regex
      • ACL2-programming-language
      • Json
      • Jfkr
      • Equational
      • Cryptography
        • R1cs
        • Interfaces
        • Sha-2
        • Keccak
        • Kdf
        • Mimc
        • Padding
        • Hmac
        • Elliptic-curves
          • Secp256k1-attachment
          • Twisted-edwards
          • Montgomery
          • Short-weierstrass-curves
          • Birational-montgomery-twisted-edwards
          • Has-square-root?-satisfies-pfield-squarep
          • Secp256k1
            • Secp256k1*
            • Secp256k1-negate
            • Secp256k1-sqrt
              • Secp256k1+
              • Secp256k1-has-square-root?
              • Secp256k1-point-type-conversions
              • Secp256k1-generator
            • Secp256k1-domain-parameters
            • Secp256k1-types
            • Pfield-squarep
            • Secp256k1-interface
            • Prime-field-extra-rules
            • Points
          • Attachments
          • Elliptic-curve-digital-signature-algorithm
        • Poseidon
        • Where-do-i-place-my-book
        • Axe
        • Bigmems
        • Builtins
        • Execloader
        • Aleo
        • Solidity
        • Paco
        • Concurrent-programs
        • Bls12-377-curves
      • Debugging
      • Std
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Secp256k1

    Secp256k1-sqrt

    Compute the modular square root of a in the field p.

    (secp256k1-sqrt a) finds an x such that x^2 = a\ (mod\ p), if such exists, where p is the prime field used for secp256k1. If there is no square root, the symbol :invalid is returned.

    Note that this function is about the prime field p used to define secp256k1. It is independent of the other secp256k1 domain parameters.

    Definitions and Theorems

    Function: secp256k1-sqrt

    (defun secp256k1-sqrt (a)
      (declare (xargs :guard (and (natp a)
                                  (< a (secp256k1-field-prime)))))
      (let ((p (secp256k1-field-prime)))
        (let ((poss-root (pow a (/ (+ p 1) 4) p)))
          (if (equal (mod (* poss-root poss-root) p)
                     a)
              poss-root
            ':invalid))))