• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
      • Apt
      • Zfc
      • Acre
      • Milawa
      • Smtlink
      • Abnf
      • Vwsim
      • Isar
      • Wp-gen
      • Dimacs-reader
      • Pfcs
      • Legacy-defrstobj
      • Proof-checker-array
      • Soft
      • C
      • Farray
      • Rp-rewriter
      • Instant-runoff-voting
      • Imp-language
      • Sidekick
      • Leftist-trees
      • Java
      • Taspi
      • Bitcoin
      • Riscv
      • Des
      • Ethereum
      • X86isa
      • Sha-2
      • Yul
      • Zcash
      • Proof-checker-itp13
      • Regex
      • ACL2-programming-language
      • Json
      • Jfkr
      • Equational
      • Cryptography
      • Poseidon
      • Where-do-i-place-my-book
      • Axe
      • Bigmems
      • Builtins
      • Execloader
      • Aleo
        • Aleobft
          • Aleobft-static
          • Aleobft-stake2
          • Aleobft-dynamic
          • Aleobft-stake
          • Aleobft-proposals
          • Library-extensions
            • Lists-noforkp
            • Oset-theorems
            • Omap-theorems
            • Set::nonemptyp
            • Arithmetic-theorems
          • Leo
        • Solidity
        • Paco
        • Concurrent-programs
        • Bls12-377-curves
      • Debugging
      • Std
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Library-extensions

    Arithmetic-theorems

    Some theorems about arithmetic.

    Definitions and Theorems

    Theorem: evenp-of-1-less-when-not-evenp

    (defthm evenp-of-1-less-when-not-evenp
      (implies (and (integerp x) (not (evenp x)))
               (evenp (1- x))))

    Theorem: evenp-of-3-less-when-not-evenp

    (defthm evenp-of-3-less-when-not-evenp
      (implies (and (integerp x) (not (evenp x)))
               (evenp (- x 3))))

    Theorem: lt-to-2+le-when-both-evenp

    (defthm lt-to-2+le-when-both-evenp
      (implies (and (rationalp x)
                    (rationalp y)
                    (evenp x)
                    (evenp y))
               (equal (< x y) (<= (+ 2 x) y))))