• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
      • Apt
      • Zfc
      • Acre
      • Milawa
      • Smtlink
      • Abnf
      • Vwsim
      • Isar
      • Wp-gen
      • Dimacs-reader
      • Pfcs
        • Proof-support
        • Abstract-syntax
        • R1cs-subset
        • Semantics
        • Abstract-syntax-operations
          • Expression-var-list
          • Lookup-definition
          • Constrel
          • Constraint-constrels
          • Constraint-list-constrels
          • Constraint-rels
          • Constraint-list-rels
          • Expression-sub
          • Expression-const/var-listp
          • Expression-var-listp
          • Expression-neg
          • Expression-list-vars
          • Expression-vars
          • Definition-free-vars
          • Constraint-vars
          • Constraint-list-vars
          • Constrel-set
            • Constrel-sfix
            • Constrel-setp
              • Constrel-sequiv
          • Indexed-names
          • Well-formedness
          • Concrete-syntax
          • R1cs-bridge
          • Parser-interface
        • Legacy-defrstobj
        • Proof-checker-array
        • Soft
        • C
        • Farray
        • Rp-rewriter
        • Instant-runoff-voting
        • Imp-language
        • Sidekick
        • Leftist-trees
        • Java
        • Taspi
        • Bitcoin
        • Riscv
        • Des
        • Ethereum
        • X86isa
        • Sha-2
        • Yul
        • Zcash
        • Proof-checker-itp13
        • Regex
        • ACL2-programming-language
        • Json
        • Jfkr
        • Equational
        • Cryptography
        • Poseidon
        • Where-do-i-place-my-book
        • Axe
        • Bigmems
        • Builtins
        • Execloader
        • Aleo
        • Solidity
        • Paco
        • Concurrent-programs
        • Bls12-377-curves
      • Debugging
      • Std
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Constrel-set

    Constrel-setp

    Recognizer for constrel-set.

    Signature
    (constrel-setp x) → *

    Definitions and Theorems

    Function: constrel-setp

    (defun constrel-setp (x)
      (declare (xargs :guard t))
      (if (atom x)
          (null x)
        (and (constrelp (car x))
             (or (null (cdr x))
                 (and (consp (cdr x))
                      (acl2::fast-<< (car x) (cadr x))
                      (constrel-setp (cdr x)))))))

    Theorem: booleanp-ofconstrel-setp

    (defthm booleanp-ofconstrel-setp
      (booleanp (constrel-setp x)))

    Theorem: setp-when-constrel-setp

    (defthm setp-when-constrel-setp
      (implies (constrel-setp x) (setp x))
      :rule-classes (:rewrite))

    Theorem: constrelp-of-head-when-constrel-setp

    (defthm constrelp-of-head-when-constrel-setp
      (implies (constrel-setp x)
               (equal (constrelp (head x))
                      (not (emptyp x)))))

    Theorem: constrel-setp-of-tail-when-constrel-setp

    (defthm constrel-setp-of-tail-when-constrel-setp
      (implies (constrel-setp x)
               (constrel-setp (tail x))))

    Theorem: constrel-setp-of-insert

    (defthm constrel-setp-of-insert
      (equal (constrel-setp (insert a x))
             (and (constrelp a)
                  (constrel-setp (sfix x)))))

    Theorem: constrelp-when-in-constrel-setp-binds-free-x

    (defthm constrelp-when-in-constrel-setp-binds-free-x
      (implies (and (in a x) (constrel-setp x))
               (constrelp a)))

    Theorem: not-in-constrel-setp-when-not-constrelp

    (defthm not-in-constrel-setp-when-not-constrelp
      (implies (and (constrel-setp x)
                    (not (constrelp a)))
               (not (in a x))))

    Theorem: constrel-setp-of-union

    (defthm constrel-setp-of-union
      (equal (constrel-setp (union x y))
             (and (constrel-setp (sfix x))
                  (constrel-setp (sfix y)))))

    Theorem: constrel-setp-of-intersect

    (defthm constrel-setp-of-intersect
      (implies (and (constrel-setp x)
                    (constrel-setp y))
               (constrel-setp (intersect x y))))

    Theorem: constrel-setp-of-difference

    (defthm constrel-setp-of-difference
      (implies (constrel-setp x)
               (constrel-setp (difference x y))))

    Theorem: constrel-setp-of-delete

    (defthm constrel-setp-of-delete
      (implies (constrel-setp x)
               (constrel-setp (delete a x))))