• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
      • Apt
      • Zfc
      • Acre
      • Milawa
      • Smtlink
      • Abnf
      • Vwsim
      • Isar
      • Wp-gen
      • Dimacs-reader
      • Pfcs
      • Legacy-defrstobj
      • Proof-checker-array
      • Soft
      • C
      • Farray
      • Rp-rewriter
      • Instant-runoff-voting
      • Imp-language
      • Sidekick
      • Leftist-trees
      • Java
      • Taspi
      • Bitcoin
      • Riscv
      • Des
      • Ethereum
      • X86isa
      • Sha-2
      • Yul
      • Zcash
      • Proof-checker-itp13
      • Regex
      • ACL2-programming-language
      • Json
      • Jfkr
      • Equational
      • Cryptography
      • Poseidon
      • Where-do-i-place-my-book
      • Axe
      • Bigmems
      • Builtins
      • Execloader
      • Aleo
      • Solidity
        • Values
          • Integer-values
          • Boolean-values
            • Bool
            • Boolean-operations
              • Bool-or
                • Bool-ne
                • Bool-eq
                • Bool-and
                • Bool-not
        • Paco
        • Concurrent-programs
        • Bls12-377-curves
      • Debugging
      • Std
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Boolean-operations

    Bool-or

    Logical disjunction of boolean values.

    Signature
    (bool-or left-operand right-operand) → result
    Arguments
    left-operand — Guard (boolp left-operand).
    right-operand — Guard (boolp right-operand).
    Returns
    result — Type (boolp result).

    Definitions and Theorems

    Function: bool-or

    (defun bool-or (left-operand right-operand)
      (declare (xargs :guard (and (boolp left-operand)
                                  (boolp right-operand))))
      (let ((__function__ 'bool-or))
        (declare (ignorable __function__))
        (b* ((x (bool->get left-operand))
             (y (bool->get right-operand)))
          (bool (or x y)))))

    Theorem: boolp-of-bool-or

    (defthm boolp-of-bool-or
      (b* ((result (bool-or left-operand right-operand)))
        (boolp result))
      :rule-classes :rewrite)

    Theorem: bool-or-of-bool-fix-left-operand

    (defthm bool-or-of-bool-fix-left-operand
      (equal (bool-or (bool-fix left-operand)
                      right-operand)
             (bool-or left-operand right-operand)))

    Theorem: bool-or-bool-equiv-congruence-on-left-operand

    (defthm bool-or-bool-equiv-congruence-on-left-operand
      (implies (bool-equiv left-operand left-operand-equiv)
               (equal (bool-or left-operand right-operand)
                      (bool-or left-operand-equiv right-operand)))
      :rule-classes :congruence)

    Theorem: bool-or-of-bool-fix-right-operand

    (defthm bool-or-of-bool-fix-right-operand
      (equal (bool-or left-operand (bool-fix right-operand))
             (bool-or left-operand right-operand)))

    Theorem: bool-or-bool-equiv-congruence-on-right-operand

    (defthm bool-or-bool-equiv-congruence-on-right-operand
      (implies (bool-equiv right-operand right-operand-equiv)
               (equal (bool-or left-operand right-operand)
                      (bool-or left-operand right-operand-equiv)))
      :rule-classes :congruence)