• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
      • Apt
      • Zfc
      • Acre
      • Milawa
      • Smtlink
      • Abnf
      • Vwsim
      • Isar
      • Wp-gen
      • Dimacs-reader
      • Pfcs
      • Legacy-defrstobj
      • Proof-checker-array
      • Soft
      • C
      • Farray
      • Rp-rewriter
      • Instant-runoff-voting
        • Fairness-criteria
        • Candidate-with-least-nth-place-votes
        • Eliminate-candidate
        • First-choice-of-majority-p
        • Candidate-ids
        • Irv
          • Create-nth-choice-count-alist
          • Irv-alt
          • Irv-ballot-p
          • Majority
          • Number-of-candidates
          • List-elements-equal
          • Number-of-voters
        • Imp-language
        • Sidekick
        • Leftist-trees
        • Java
        • Taspi
        • Bitcoin
        • Riscv
        • Des
        • Ethereum
        • X86isa
        • Sha-2
        • Yul
        • Zcash
        • Proof-checker-itp13
        • Regex
        • ACL2-programming-language
        • Json
        • Jfkr
        • Equational
        • Cryptography
        • Poseidon
        • Where-do-i-place-my-book
        • Axe
        • Bigmems
        • Builtins
        • Execloader
        • Aleo
        • Solidity
        • Paco
        • Concurrent-programs
        • Bls12-377-curves
      • Debugging
      • Std
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Instant-runoff-voting

    Irv

    Compute the winner of an IRV election

    Signature
    (irv xs) → *
    Arguments
    xs — Guard (irv-ballot-p xs).

    Definitions and Theorems

    Theorem: nat-listp-of-flatten-of-irv-ballot

    (defthm nat-listp-of-flatten-of-irv-ballot
      (implies (irv-ballot-p xs)
               (nat-listp (acl2::flatten xs))))

    Theorem: irv-termination-helper-lemma

    (defthm irv-termination-helper-lemma
     (implies
      (and (irv-ballot-p xs)
           (consp xs)
           (not (natp (first-choice-of-majority-p (candidate-ids xs)
                                                  xs))))
      (<
       (number-of-candidates
         (eliminate-candidate
              (candidate-with-least-nth-place-votes 0 (candidate-ids xs)
                                                    xs)
              xs))
       (number-of-candidates xs)))
     :rule-classes :linear)

    Theorem: len-of-consp-not-zero

    (defthm len-of-consp-not-zero
      (implies (consp x)
               (not (equal (len x) 0))))

    Theorem: list-elements-equal-under-remove-duplicates-equal

    (defthm list-elements-equal-under-remove-duplicates-equal
      (iff (list-elements-equal e x)
           (list-elements-equal e (remove-duplicates-equal x))))

    Theorem: make-nth-choice-list-and-flatten-for-1-candidate-helper-1

    (defthm make-nth-choice-list-and-flatten-for-1-candidate-helper-1
     (implies
          (and (nat-listp (car xs))
               (no-duplicatesp-equal (car xs))
               (equal (make-nth-choice-list 0 (cdr xs))
                      (acl2::flatten (cdr xs)))
               (irv-ballot-p (cdr xs))
               (equal (len (remove-duplicates-equal (acl2::flatten xs)))
                      1))
          (equal (make-nth-choice-list 0 xs)
                 (acl2::flatten xs))))

    Theorem: exactly-one-candidate-gets-all-the-votes

    (defthm exactly-one-candidate-gets-all-the-votes
     (implies
      (and (irv-ballot-p xs)
           (equal (number-of-candidates xs) 1))
      (equal
       (max-nats
         (strip-cdrs (create-nth-choice-count-alist 0 (candidate-ids xs)
                                                    xs)))
       (number-of-voters xs))))

    Theorem: exactly-one-candidate-gets-the-majority-votes

    (defthm exactly-one-candidate-gets-the-majority-votes
     (implies
      (and (irv-ballot-p xs)
           (consp xs)
           (<= (number-of-candidates xs) 1))
      (<
       (majority (number-of-voters xs))
       (max-nats
         (strip-cdrs (create-nth-choice-count-alist 0 (candidate-ids xs)
                                                    xs))))))

    Theorem: first-choice-of-majority-p-empty-implies-more-than-one-candidate

    (defthm
       first-choice-of-majority-p-empty-implies-more-than-one-candidate
      (b* ((cids (candidate-ids xs))
           (winner-by-majority (first-choice-of-majority-p cids xs)))
        (implies (and (irv-ballot-p xs)
                      (consp xs)
                      (not (natp winner-by-majority)))
                 (< 1 (number-of-candidates xs))))
      :rule-classes :linear)

    Function: irv

    (defun irv (xs)
     (declare (xargs :guard (irv-ballot-p xs)))
     (let ((__function__ 'irv))
      (declare (ignorable __function__))
      (if
       (mbt (irv-ballot-p xs))
       (if (endp xs)
           nil
         (b*
          ((cids (candidate-ids xs))
           (step-1-candidate (first-choice-of-majority-p cids xs))
           ((when (natp step-1-candidate))
            step-1-candidate)
           (step-2-candidate-to-remove
                (candidate-with-least-nth-place-votes 0 cids xs))
           (new-xs (eliminate-candidate step-2-candidate-to-remove xs)))
          (irv new-xs)))
       nil)))

    Theorem: non-empty-ballot-returns-one-winner

    (defthm non-empty-ballot-returns-one-winner
      (implies (and (irv-ballot-p xs) (consp xs))
               (natp (irv xs)))
      :rule-classes (:rewrite :type-prescription))

    Theorem: irv-winner-is-a-member-of-initial-candidate-ids

    (defthm irv-winner-is-a-member-of-initial-candidate-ids
      (implies (and (irv-ballot-p xs) (consp xs))
               (member-equal (irv xs)
                             (candidate-ids xs))))