• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
      • Apt
      • Zfc
      • Acre
      • Milawa
      • Smtlink
      • Abnf
      • Vwsim
      • Isar
      • Wp-gen
      • Dimacs-reader
      • Pfcs
      • Legacy-defrstobj
      • Proof-checker-array
      • Soft
      • C
      • Farray
      • Rp-rewriter
      • Instant-runoff-voting
      • Imp-language
        • Semantics
        • Abstract-syntax
          • Aexp
            • Aexp-case
            • Aexp-fix
            • Aexpp
            • Aexp-count
            • Aexp-equiv
              • Aexp-mul
              • Aexp-add
              • Aexp-var
              • Aexp-const
              • Aexp-kind
            • Bexp
            • Comm
            • Comm-list
            • Command-fixtypes
          • Interpreter
        • Sidekick
        • Leftist-trees
        • Java
        • Taspi
        • Bitcoin
        • Riscv
        • Des
        • Ethereum
        • X86isa
        • Sha-2
        • Yul
        • Zcash
        • Proof-checker-itp13
        • Regex
        • ACL2-programming-language
        • Json
        • Jfkr
        • Equational
        • Cryptography
        • Poseidon
        • Where-do-i-place-my-book
        • Axe
        • Bigmems
        • Builtins
        • Execloader
        • Aleo
        • Solidity
        • Paco
        • Concurrent-programs
        • Bls12-377-curves
      • Debugging
      • Std
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Aexp

    Aexp-equiv

    Basic equivalence relation for aexp structures.

    Definitions and Theorems

    Function: aexp-equiv$inline

    (defun aexp-equiv$inline (acl2::x acl2::y)
      (declare (xargs :guard (and (aexpp acl2::x) (aexpp acl2::y))))
      (equal (aexp-fix acl2::x)
             (aexp-fix acl2::y)))

    Theorem: aexp-equiv-is-an-equivalence

    (defthm aexp-equiv-is-an-equivalence
      (and (booleanp (aexp-equiv x y))
           (aexp-equiv x x)
           (implies (aexp-equiv x y)
                    (aexp-equiv y x))
           (implies (and (aexp-equiv x y) (aexp-equiv y z))
                    (aexp-equiv x z)))
      :rule-classes (:equivalence))

    Theorem: aexp-equiv-implies-equal-aexp-fix-1

    (defthm aexp-equiv-implies-equal-aexp-fix-1
      (implies (aexp-equiv acl2::x x-equiv)
               (equal (aexp-fix acl2::x)
                      (aexp-fix x-equiv)))
      :rule-classes (:congruence))

    Theorem: aexp-fix-under-aexp-equiv

    (defthm aexp-fix-under-aexp-equiv
      (aexp-equiv (aexp-fix acl2::x) acl2::x)
      :rule-classes (:rewrite :rewrite-quoted-constant))

    Theorem: equal-of-aexp-fix-1-forward-to-aexp-equiv

    (defthm equal-of-aexp-fix-1-forward-to-aexp-equiv
      (implies (equal (aexp-fix acl2::x) acl2::y)
               (aexp-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: equal-of-aexp-fix-2-forward-to-aexp-equiv

    (defthm equal-of-aexp-fix-2-forward-to-aexp-equiv
      (implies (equal acl2::x (aexp-fix acl2::y))
               (aexp-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: aexp-equiv-of-aexp-fix-1-forward

    (defthm aexp-equiv-of-aexp-fix-1-forward
      (implies (aexp-equiv (aexp-fix acl2::x) acl2::y)
               (aexp-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: aexp-equiv-of-aexp-fix-2-forward

    (defthm aexp-equiv-of-aexp-fix-2-forward
      (implies (aexp-equiv acl2::x (aexp-fix acl2::y))
               (aexp-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)