• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
      • Apt
      • Zfc
      • Acre
      • Milawa
      • Smtlink
      • Abnf
      • Vwsim
      • Isar
      • Wp-gen
      • Dimacs-reader
      • Pfcs
      • Legacy-defrstobj
      • Proof-checker-array
      • Soft
      • C
      • Farray
      • Rp-rewriter
      • Instant-runoff-voting
      • Imp-language
      • Sidekick
      • Leftist-trees
      • Java
      • Taspi
      • Bitcoin
      • Riscv
      • Des
      • Ethereum
      • X86isa
      • Sha-2
      • Yul
      • Zcash
      • Proof-checker-itp13
      • Regex
      • ACL2-programming-language
      • Json
      • Jfkr
      • Equational
      • Cryptography
      • Poseidon
      • Where-do-i-place-my-book
      • Axe
      • Bigmems
      • Builtins
      • Execloader
      • Aleo
      • Solidity
      • Paco
      • Concurrent-programs
      • Bls12-377-curves
        • Edwards-bls12
          • Edwards-bls12-pointp
          • Edwards-bls12-q
          • Edwards-bls12-d
          • Edwards-bls12-point->v
          • Edwards-bls12-point->u
          • Maybe-edwards-bls12-pointp
          • Edwards-bls12-add
          • Edwards-bls12-mul-fast
          • Edwards-bls12-rstar-pointp
          • Edwards-bls12-mul
          • Edwards-bls12-a
          • Edwards-bls12-r-pointp
          • Edwards-bls12-neg
          • Edwards-bls12-curve
          • Edwards-bls12-r
          • Edwards-bls12-h
            • Edwards-bls12-subgroup-prime
          • Bls12-377-domain-parameters
      • Debugging
      • Std
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Edwards-bls12

    Edwards-bls12-h

    The elliptic curve cofactor.

    Signature
    (edwards-bls12-h) → h
    Returns
    h — Type (natp h).

    This is the number that, when multiplied by the large subgroup order r, yields the full order of the elliptic curve group.

    Definitions and Theorems

    Function: edwards-bls12-h

    (defun edwards-bls12-h nil
      (declare (xargs :guard t))
      (let ((acl2::__function__ 'edwards-bls12-h))
        (declare (ignorable acl2::__function__))
        4))

    Theorem: natp-of-edwards-bls12-h

    (defthm natp-of-edwards-bls12-h
      (b* ((h (edwards-bls12-h))) (natp h))
      :rule-classes :rewrite)