• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
      • Apt
      • Zfc
      • Acre
      • Milawa
      • Smtlink
      • Abnf
      • Vwsim
      • Isar
      • Wp-gen
      • Dimacs-reader
      • Pfcs
      • Legacy-defrstobj
      • Proof-checker-array
      • Soft
      • C
      • Farray
      • Rp-rewriter
      • Instant-runoff-voting
      • Imp-language
      • Sidekick
      • Leftist-trees
      • Java
      • Taspi
      • Bitcoin
      • Riscv
        • Instructions
        • States
        • Decoding
        • Encoding
        • Features
          • Feat-bits
          • Feat
            • Featp
            • Feat-fix
            • Feat-equiv
            • Make-feat
            • Change-feat
            • Feat->bits
            • Feat->xnum
            • Feat->xlen
            • Feat-64p
            • Feat-32p
          • Semantics
          • Execution
        • Des
        • Ethereum
        • X86isa
        • Sha-2
        • Yul
        • Zcash
        • Proof-checker-itp13
        • Regex
        • ACL2-programming-language
        • Json
        • Jfkr
        • Equational
        • Cryptography
        • Poseidon
        • Where-do-i-place-my-book
        • Axe
        • Bigmems
        • Builtins
        • Execloader
        • Aleo
        • Solidity
        • Paco
        • Concurrent-programs
        • Bls12-377-curves
      • Debugging
      • Std
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Feat

    Feat->bits

    Get the bits field from a feat.

    Signature
    (feat->bits x) → bits
    Arguments
    x — Guard (featp x).
    Returns
    bits — Type (feat-bitsp bits).

    This is an ordinary field accessor created by fty::defprod.

    Definitions and Theorems

    Function: feat->bits$inline

    (defun feat->bits$inline (x)
      (declare (xargs :guard (featp x)))
      (declare (xargs :guard t))
      (let ((__function__ 'feat->bits))
        (declare (ignorable __function__))
        (mbe :logic
             (b* ((x (and t x)))
               (feat-bits-fix (cdr (std::da-nth 0 x))))
             :exec (cdr (std::da-nth 0 x)))))

    Theorem: feat-bitsp-of-feat->bits

    (defthm feat-bitsp-of-feat->bits
      (b* ((bits (feat->bits$inline x)))
        (feat-bitsp bits))
      :rule-classes :rewrite)

    Theorem: feat->bits$inline-of-feat-fix-x

    (defthm feat->bits$inline-of-feat-fix-x
      (equal (feat->bits$inline (feat-fix x))
             (feat->bits$inline x)))

    Theorem: feat->bits$inline-feat-equiv-congruence-on-x

    (defthm feat->bits$inline-feat-equiv-congruence-on-x
      (implies (feat-equiv x x-equiv)
               (equal (feat->bits$inline x)
                      (feat->bits$inline x-equiv)))
      :rule-classes :congruence)