• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
      • Apt
      • Zfc
      • Acre
      • Milawa
      • Smtlink
      • Abnf
      • Vwsim
      • Isar
      • Wp-gen
      • Dimacs-reader
      • Pfcs
      • Legacy-defrstobj
      • Proof-checker-array
      • Soft
      • C
      • Farray
      • Rp-rewriter
      • Instant-runoff-voting
      • Imp-language
      • Sidekick
      • Leftist-trees
      • Java
      • Taspi
      • Bitcoin
      • Riscv
        • Instructions
        • States
        • Decoding
        • Encoding
        • Features
          • Feat-bits
            • Feat-bits-case
            • Feat-bits-fix
              • Feat-bits-equiv
              • Feat-bitsp
              • Feat-bits-64
              • Feat-bits-32
              • Feat-bits-kind
            • Feat
            • Feat->xnum
            • Feat->xlen
            • Feat-64p
            • Feat-32p
          • Semantics
          • Execution
        • Des
        • Ethereum
        • X86isa
        • Sha-2
        • Yul
        • Zcash
        • Proof-checker-itp13
        • Regex
        • ACL2-programming-language
        • Json
        • Jfkr
        • Equational
        • Cryptography
        • Poseidon
        • Where-do-i-place-my-book
        • Axe
        • Bigmems
        • Builtins
        • Execloader
        • Aleo
        • Solidity
        • Paco
        • Concurrent-programs
        • Bls12-377-curves
      • Debugging
      • Std
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Feat-bits

    Feat-bits-fix

    Fixing function for feat-bits structures.

    Signature
    (feat-bits-fix x) → new-x
    Arguments
    x — Guard (feat-bitsp x).
    Returns
    new-x — Type (feat-bitsp new-x).

    Definitions and Theorems

    Function: feat-bits-fix$inline

    (defun feat-bits-fix$inline (x)
      (declare (xargs :guard (feat-bitsp x)))
      (let ((__function__ 'feat-bits-fix))
        (declare (ignorable __function__))
        (mbe :logic
             (case (feat-bits-kind x)
               (:|32| (cons :|32| (list)))
               (:|64| (cons :|64| (list))))
             :exec x)))

    Theorem: feat-bitsp-of-feat-bits-fix

    (defthm feat-bitsp-of-feat-bits-fix
      (b* ((new-x (feat-bits-fix$inline x)))
        (feat-bitsp new-x))
      :rule-classes :rewrite)

    Theorem: feat-bits-fix-when-feat-bitsp

    (defthm feat-bits-fix-when-feat-bitsp
      (implies (feat-bitsp x)
               (equal (feat-bits-fix x) x)))

    Function: feat-bits-equiv$inline

    (defun feat-bits-equiv$inline (acl2::x acl2::y)
      (declare (xargs :guard (and (feat-bitsp acl2::x)
                                  (feat-bitsp acl2::y))))
      (equal (feat-bits-fix acl2::x)
             (feat-bits-fix acl2::y)))

    Theorem: feat-bits-equiv-is-an-equivalence

    (defthm feat-bits-equiv-is-an-equivalence
      (and (booleanp (feat-bits-equiv x y))
           (feat-bits-equiv x x)
           (implies (feat-bits-equiv x y)
                    (feat-bits-equiv y x))
           (implies (and (feat-bits-equiv x y)
                         (feat-bits-equiv y z))
                    (feat-bits-equiv x z)))
      :rule-classes (:equivalence))

    Theorem: feat-bits-equiv-implies-equal-feat-bits-fix-1

    (defthm feat-bits-equiv-implies-equal-feat-bits-fix-1
      (implies (feat-bits-equiv acl2::x x-equiv)
               (equal (feat-bits-fix acl2::x)
                      (feat-bits-fix x-equiv)))
      :rule-classes (:congruence))

    Theorem: feat-bits-fix-under-feat-bits-equiv

    (defthm feat-bits-fix-under-feat-bits-equiv
      (feat-bits-equiv (feat-bits-fix acl2::x)
                       acl2::x)
      :rule-classes (:rewrite :rewrite-quoted-constant))

    Theorem: equal-of-feat-bits-fix-1-forward-to-feat-bits-equiv

    (defthm equal-of-feat-bits-fix-1-forward-to-feat-bits-equiv
      (implies (equal (feat-bits-fix acl2::x) acl2::y)
               (feat-bits-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: equal-of-feat-bits-fix-2-forward-to-feat-bits-equiv

    (defthm equal-of-feat-bits-fix-2-forward-to-feat-bits-equiv
      (implies (equal acl2::x (feat-bits-fix acl2::y))
               (feat-bits-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: feat-bits-equiv-of-feat-bits-fix-1-forward

    (defthm feat-bits-equiv-of-feat-bits-fix-1-forward
      (implies (feat-bits-equiv (feat-bits-fix acl2::x)
                                acl2::y)
               (feat-bits-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: feat-bits-equiv-of-feat-bits-fix-2-forward

    (defthm feat-bits-equiv-of-feat-bits-fix-2-forward
      (implies (feat-bits-equiv acl2::x (feat-bits-fix acl2::y))
               (feat-bits-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: feat-bits-kind$inline-of-feat-bits-fix-x

    (defthm feat-bits-kind$inline-of-feat-bits-fix-x
      (equal (feat-bits-kind$inline (feat-bits-fix x))
             (feat-bits-kind$inline x)))

    Theorem: feat-bits-kind$inline-feat-bits-equiv-congruence-on-x

    (defthm feat-bits-kind$inline-feat-bits-equiv-congruence-on-x
      (implies (feat-bits-equiv x x-equiv)
               (equal (feat-bits-kind$inline x)
                      (feat-bits-kind$inline x-equiv)))
      :rule-classes :congruence)

    Theorem: consp-of-feat-bits-fix

    (defthm consp-of-feat-bits-fix
      (consp (feat-bits-fix x))
      :rule-classes :type-prescription)