• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
      • Apt
      • Zfc
      • Acre
      • Milawa
      • Smtlink
      • Abnf
      • Vwsim
      • Isar
      • Wp-gen
      • Dimacs-reader
      • Pfcs
      • Legacy-defrstobj
      • Proof-checker-array
      • Soft
      • C
      • Farray
      • Rp-rewriter
      • Instant-runoff-voting
      • Imp-language
      • Sidekick
      • Leftist-trees
      • Java
      • Taspi
      • Bitcoin
      • Riscv
        • Instructions
        • States
        • Decoding
        • Encoding
        • Features
        • Semantics
          • Semantics64
            • Exec64-bgeu
            • Exec64-bltu
            • Exec64-blt
            • Exec64-bge
            • Exec64-bne
            • Exec64-beq
              • Exec64-jalr
              • Exec64-branch
              • Exec64-jal
              • Exec64-op-imms-32
              • Exec64-op-32
              • Exec64-op
              • Exec64-srlw
              • Exec64-sraw
              • Exec64-op-imm-32
              • Exec64-op-imm
              • Exec64-auipc
              • Exec64-store
              • Exec64-sra
              • Exec64-sltiu
              • Exec64-remw
              • Exec64-remuw
              • Exec64-op-imms
              • Exec64-load
              • Exec64-srliw
              • Exec64-srl
              • Exec64-sraiw
              • Exec64-slti
              • Exec64-sllw
              • Exec64-remu
              • Exec64-rem
              • Exec64-divw
              • Exec64-divuw
              • Exec64-addiw
              • Exec64-xori
              • Exec64-srli
              • Exec64-srai
              • Exec64-ori
              • Exec64-divu
              • Exec64-andi
              • Exec64-addi
              • Exec64-sltu
              • Exec64-slt
              • Exec64-slliw
              • Exec64-sll
              • Exec64-mulhsu
              • Exec64-lwu
              • Exec64-lhu
              • Exec64-div
              • Exec64-xor
              • Exec64-sw
              • Exec64-slli
              • Exec64-sh
              • Exec64-mulw
              • Exec64-mulhu
              • Exec64-mulh
              • Exec64-lw
              • Exec64-lh
              • Exec64-lbu
              • Exec64-addw
              • Exec64-subw
              • Exec64-sub
              • Exec64-sd
              • Exec64-sb
              • Exec64-or
              • Exec64-ld
              • Exec64-lb
              • Exec64-and
              • Exec64-mul
              • Exec64-add
              • Exec64-instr
              • Eff64-addr
              • Exec64-lui
            • Semantics32
          • Execution
        • Des
        • Ethereum
        • X86isa
        • Sha-2
        • Yul
        • Zcash
        • Proof-checker-itp13
        • Regex
        • ACL2-programming-language
        • Json
        • Jfkr
        • Equational
        • Cryptography
        • Poseidon
        • Where-do-i-place-my-book
        • Axe
        • Bigmems
        • Builtins
        • Execloader
        • Aleo
        • Solidity
        • Paco
        • Concurrent-programs
        • Bls12-377-curves
      • Debugging
      • Std
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Semantics64

    Exec64-beq

    Semantics of the BEQ instruction [ISA:2.5.2].

    Signature
    (exec64-beq rs1 rs2 imm pc stat) → new-stat
    Arguments
    rs1 — Guard (ubyte5p rs1).
    rs2 — Guard (ubyte5p rs2).
    imm — Guard (ubyte12p imm).
    pc — Guard (ubyte64p pc).
    stat — Guard (state64p stat).
    Returns
    new-stat — Type (state64p new-stat).

    We read two unsigned 64-bit integers from rs1 and rs2. We use the 12 bits of the immediate as the high bits of a 13-bit integer, whose low bit is 0 (i.e. the immediate measures multiples of 2); the unsigned 13-bit integer is sign-extended to 64 bits, obtaining an offset. We add the offset to the address of the instruction, which is passed as the pc input to this function; this is the branch target. We compare the two integers from the registers: if they are equal, we write the branch target to the program counter; otherwise, we increment the program counter.

    Definitions and Theorems

    Function: exec64-beq

    (defun exec64-beq (rs1 rs2 imm pc stat)
      (declare (xargs :guard (and (ubyte5p rs1)
                                  (ubyte5p rs2)
                                  (ubyte12p imm)
                                  (ubyte64p pc)
                                  (state64p stat))))
      (let ((__function__ 'exec64-beq))
        (declare (ignorable __function__))
        (b* ((rs1-operand (read64-xreg-unsigned rs1 stat))
             (rs2-operand (read64-xreg-unsigned rs2 stat))
             (offset (loghead 64
                              (logext 13 (ash (ubyte12-fix imm) 1))))
             (target-pc (+ (ubyte64-fix pc) offset))
             (stat (if (= rs1-operand rs2-operand)
                       (write64-pc target-pc stat)
                     (inc64-pc stat))))
          stat)))

    Theorem: state64p-of-exec64-beq

    (defthm state64p-of-exec64-beq
      (b* ((new-stat (exec64-beq rs1 rs2 imm pc stat)))
        (state64p new-stat))
      :rule-classes :rewrite)

    Theorem: exec64-beq-of-ubyte5-fix-rs1

    (defthm exec64-beq-of-ubyte5-fix-rs1
      (equal (exec64-beq (ubyte5-fix rs1)
                         rs2 imm pc stat)
             (exec64-beq rs1 rs2 imm pc stat)))

    Theorem: exec64-beq-ubyte5-equiv-congruence-on-rs1

    (defthm exec64-beq-ubyte5-equiv-congruence-on-rs1
      (implies (ubyte5-equiv rs1 rs1-equiv)
               (equal (exec64-beq rs1 rs2 imm pc stat)
                      (exec64-beq rs1-equiv rs2 imm pc stat)))
      :rule-classes :congruence)

    Theorem: exec64-beq-of-ubyte5-fix-rs2

    (defthm exec64-beq-of-ubyte5-fix-rs2
      (equal (exec64-beq rs1 (ubyte5-fix rs2)
                         imm pc stat)
             (exec64-beq rs1 rs2 imm pc stat)))

    Theorem: exec64-beq-ubyte5-equiv-congruence-on-rs2

    (defthm exec64-beq-ubyte5-equiv-congruence-on-rs2
      (implies (ubyte5-equiv rs2 rs2-equiv)
               (equal (exec64-beq rs1 rs2 imm pc stat)
                      (exec64-beq rs1 rs2-equiv imm pc stat)))
      :rule-classes :congruence)

    Theorem: exec64-beq-of-ubyte12-fix-imm

    (defthm exec64-beq-of-ubyte12-fix-imm
      (equal (exec64-beq rs1 rs2 (ubyte12-fix imm)
                         pc stat)
             (exec64-beq rs1 rs2 imm pc stat)))

    Theorem: exec64-beq-ubyte12-equiv-congruence-on-imm

    (defthm exec64-beq-ubyte12-equiv-congruence-on-imm
      (implies (acl2::ubyte12-equiv imm imm-equiv)
               (equal (exec64-beq rs1 rs2 imm pc stat)
                      (exec64-beq rs1 rs2 imm-equiv pc stat)))
      :rule-classes :congruence)

    Theorem: exec64-beq-of-ubyte64-fix-pc

    (defthm exec64-beq-of-ubyte64-fix-pc
      (equal (exec64-beq rs1 rs2 imm (ubyte64-fix pc)
                         stat)
             (exec64-beq rs1 rs2 imm pc stat)))

    Theorem: exec64-beq-ubyte64-equiv-congruence-on-pc

    (defthm exec64-beq-ubyte64-equiv-congruence-on-pc
      (implies (acl2::ubyte64-equiv pc pc-equiv)
               (equal (exec64-beq rs1 rs2 imm pc stat)
                      (exec64-beq rs1 rs2 imm pc-equiv stat)))
      :rule-classes :congruence)

    Theorem: exec64-beq-of-state64-fix-stat

    (defthm exec64-beq-of-state64-fix-stat
      (equal (exec64-beq rs1 rs2 imm pc (state64-fix stat))
             (exec64-beq rs1 rs2 imm pc stat)))

    Theorem: exec64-beq-state64-equiv-congruence-on-stat

    (defthm exec64-beq-state64-equiv-congruence-on-stat
      (implies (state64-equiv stat stat-equiv)
               (equal (exec64-beq rs1 rs2 imm pc stat)
                      (exec64-beq rs1 rs2 imm pc stat-equiv)))
      :rule-classes :congruence)