• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
      • Apt
      • Zfc
      • Acre
      • Milawa
      • Smtlink
      • Abnf
      • Vwsim
      • Isar
      • Wp-gen
      • Dimacs-reader
      • Pfcs
      • Legacy-defrstobj
      • Proof-checker-array
      • Soft
      • C
      • Farray
      • Rp-rewriter
      • Instant-runoff-voting
      • Imp-language
      • Sidekick
      • Leftist-trees
      • Java
      • Taspi
      • Bitcoin
      • Riscv
        • Instructions
          • Instr
          • Op-funct
            • Op-funct-fix
              • Op-funct-case
              • Op-funct-p
              • Op-funct-equiv
              • Op-funct-kind
              • Op-funct-xor
              • Op-funct-sub
              • Op-funct-srl
              • Op-funct-sra
              • Op-funct-sltu
              • Op-funct-slt
              • Op-funct-sll
              • Op-funct-remu
              • Op-funct-rem
              • Op-funct-or
              • Op-funct-mulhu
              • Op-funct-mulhsu
              • Op-funct-mulh
              • Op-funct-mul
              • Op-funct-divu
              • Op-funct-div
              • Op-funct-and
              • Op-funct-add
            • Op-32-funct
            • Op-imm-funct
            • Load-funct
            • Branch-funct
            • Op-imms-funct
            • Store-funct
            • Op-imms-32-funct
            • Instr-validp
            • Instr-option
            • Op-imm-32-funct
          • States
          • Decoding
          • Encoding
          • Features
          • Semantics
          • Execution
        • Des
        • Ethereum
        • X86isa
        • Sha-2
        • Yul
        • Zcash
        • Proof-checker-itp13
        • Regex
        • ACL2-programming-language
        • Json
        • Jfkr
        • Equational
        • Cryptography
        • Poseidon
        • Where-do-i-place-my-book
        • Axe
        • Bigmems
        • Builtins
        • Execloader
        • Aleo
        • Solidity
        • Paco
        • Concurrent-programs
        • Bls12-377-curves
      • Debugging
      • Std
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Op-funct

    Op-funct-fix

    Fixing function for op-funct structures.

    Signature
    (op-funct-fix x) → new-x
    Arguments
    x — Guard (op-funct-p x).
    Returns
    new-x — Type (op-funct-p new-x).

    Definitions and Theorems

    Function: op-funct-fix$inline

    (defun op-funct-fix$inline (x)
      (declare (xargs :guard (op-funct-p x)))
      (let ((__function__ 'op-funct-fix))
        (declare (ignorable __function__))
        (mbe :logic
             (case (op-funct-kind x)
               (:add (cons :add (list)))
               (:sub (cons :sub (list)))
               (:slt (cons :slt (list)))
               (:sltu (cons :sltu (list)))
               (:and (cons :and (list)))
               (:or (cons :or (list)))
               (:xor (cons :xor (list)))
               (:sll (cons :sll (list)))
               (:srl (cons :srl (list)))
               (:sra (cons :sra (list)))
               (:mul (cons :mul (list)))
               (:mulh (cons :mulh (list)))
               (:mulhu (cons :mulhu (list)))
               (:mulhsu (cons :mulhsu (list)))
               (:div (cons :div (list)))
               (:divu (cons :divu (list)))
               (:rem (cons :rem (list)))
               (:remu (cons :remu (list))))
             :exec x)))

    Theorem: op-funct-p-of-op-funct-fix

    (defthm op-funct-p-of-op-funct-fix
      (b* ((new-x (op-funct-fix$inline x)))
        (op-funct-p new-x))
      :rule-classes :rewrite)

    Theorem: op-funct-fix-when-op-funct-p

    (defthm op-funct-fix-when-op-funct-p
      (implies (op-funct-p x)
               (equal (op-funct-fix x) x)))

    Function: op-funct-equiv$inline

    (defun op-funct-equiv$inline (acl2::x acl2::y)
      (declare (xargs :guard (and (op-funct-p acl2::x)
                                  (op-funct-p acl2::y))))
      (equal (op-funct-fix acl2::x)
             (op-funct-fix acl2::y)))

    Theorem: op-funct-equiv-is-an-equivalence

    (defthm op-funct-equiv-is-an-equivalence
      (and (booleanp (op-funct-equiv x y))
           (op-funct-equiv x x)
           (implies (op-funct-equiv x y)
                    (op-funct-equiv y x))
           (implies (and (op-funct-equiv x y)
                         (op-funct-equiv y z))
                    (op-funct-equiv x z)))
      :rule-classes (:equivalence))

    Theorem: op-funct-equiv-implies-equal-op-funct-fix-1

    (defthm op-funct-equiv-implies-equal-op-funct-fix-1
      (implies (op-funct-equiv acl2::x x-equiv)
               (equal (op-funct-fix acl2::x)
                      (op-funct-fix x-equiv)))
      :rule-classes (:congruence))

    Theorem: op-funct-fix-under-op-funct-equiv

    (defthm op-funct-fix-under-op-funct-equiv
      (op-funct-equiv (op-funct-fix acl2::x)
                      acl2::x)
      :rule-classes (:rewrite :rewrite-quoted-constant))

    Theorem: equal-of-op-funct-fix-1-forward-to-op-funct-equiv

    (defthm equal-of-op-funct-fix-1-forward-to-op-funct-equiv
      (implies (equal (op-funct-fix acl2::x) acl2::y)
               (op-funct-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: equal-of-op-funct-fix-2-forward-to-op-funct-equiv

    (defthm equal-of-op-funct-fix-2-forward-to-op-funct-equiv
      (implies (equal acl2::x (op-funct-fix acl2::y))
               (op-funct-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: op-funct-equiv-of-op-funct-fix-1-forward

    (defthm op-funct-equiv-of-op-funct-fix-1-forward
      (implies (op-funct-equiv (op-funct-fix acl2::x)
                               acl2::y)
               (op-funct-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: op-funct-equiv-of-op-funct-fix-2-forward

    (defthm op-funct-equiv-of-op-funct-fix-2-forward
      (implies (op-funct-equiv acl2::x (op-funct-fix acl2::y))
               (op-funct-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: op-funct-kind$inline-of-op-funct-fix-x

    (defthm op-funct-kind$inline-of-op-funct-fix-x
      (equal (op-funct-kind$inline (op-funct-fix x))
             (op-funct-kind$inline x)))

    Theorem: op-funct-kind$inline-op-funct-equiv-congruence-on-x

    (defthm op-funct-kind$inline-op-funct-equiv-congruence-on-x
      (implies (op-funct-equiv x x-equiv)
               (equal (op-funct-kind$inline x)
                      (op-funct-kind$inline x-equiv)))
      :rule-classes :congruence)

    Theorem: consp-of-op-funct-fix

    (defthm consp-of-op-funct-fix
      (consp (op-funct-fix x))
      :rule-classes :type-prescription)