• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
      • Apt
      • Zfc
      • Acre
      • Milawa
      • Smtlink
      • Abnf
        • Deftreeops
        • Defdefparse
        • Defgrammar
        • Tree-utilities
        • Notation
          • Syntax-abstraction
          • Semantics
          • Abstract-syntax
            • Convenience-constructors
            • Num-val
              • Num-val-case
              • Num-val-fix
                • Num-val-p
                • Num-val-equiv
                • Num-val-range
                • Num-val-direct
                • Num-val-kind
              • Char-val
              • Repeat-range
              • Rulename
              • Rule
              • Rulename-option
              • Num-base
              • Rule-option
              • Prose-val
              • Rulelist
              • Char-val-set
              • Rulename-set
              • Rulename-list
              • Grammar
              • Alt/conc/rep/elem
            • Core-rules
            • Concrete-syntax
          • Grammar-parser
          • Meta-circular-validation
          • Parsing-primitives-defresult
          • Parsing-primitives-seq
          • Operations
          • Examples
          • Differences-with-paper
          • Constructor-utilities
          • Grammar-printer
          • Parsing-tools
        • Vwsim
        • Isar
        • Wp-gen
        • Dimacs-reader
        • Pfcs
        • Legacy-defrstobj
        • Proof-checker-array
        • Soft
        • C
        • Farray
        • Rp-rewriter
        • Instant-runoff-voting
        • Imp-language
        • Sidekick
        • Leftist-trees
        • Java
        • Taspi
        • Bitcoin
        • Riscv
        • Des
        • Ethereum
        • X86isa
        • Sha-2
        • Yul
        • Zcash
        • Proof-checker-itp13
        • Regex
        • ACL2-programming-language
        • Json
        • Jfkr
        • Equational
        • Cryptography
        • Poseidon
        • Where-do-i-place-my-book
        • Axe
        • Bigmems
        • Builtins
        • Execloader
        • Aleo
        • Solidity
        • Paco
        • Concurrent-programs
        • Bls12-377-curves
      • Debugging
      • Std
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Num-val

    Num-val-fix

    Fixing function for num-val structures.

    Signature
    (num-val-fix x) → new-x
    Arguments
    x — Guard (num-val-p x).
    Returns
    new-x — Type (num-val-p new-x).

    Definitions and Theorems

    Function: num-val-fix$inline

    (defun num-val-fix$inline (x)
     (declare (xargs :guard (num-val-p x)))
     (let ((__function__ 'num-val-fix))
      (declare (ignorable __function__))
      (mbe :logic
           (case (num-val-kind x)
             (:direct (b* ((base (num-base-fix (std::da-nth 0 (cdr x))))
                           (get (nat-list-fix (std::da-nth 1 (cdr x)))))
                        (cons :direct (list base get))))
             (:range (b* ((base (num-base-fix (std::da-nth 0 (cdr x))))
                          (min (nfix (std::da-nth 1 (cdr x))))
                          (max (nfix (std::da-nth 2 (cdr x)))))
                       (cons :range (list base min max)))))
           :exec x)))

    Theorem: num-val-p-of-num-val-fix

    (defthm num-val-p-of-num-val-fix
      (b* ((new-x (num-val-fix$inline x)))
        (num-val-p new-x))
      :rule-classes :rewrite)

    Theorem: num-val-fix-when-num-val-p

    (defthm num-val-fix-when-num-val-p
      (implies (num-val-p x)
               (equal (num-val-fix x) x)))

    Function: num-val-equiv$inline

    (defun num-val-equiv$inline (acl2::x acl2::y)
      (declare (xargs :guard (and (num-val-p acl2::x)
                                  (num-val-p acl2::y))))
      (equal (num-val-fix acl2::x)
             (num-val-fix acl2::y)))

    Theorem: num-val-equiv-is-an-equivalence

    (defthm num-val-equiv-is-an-equivalence
      (and (booleanp (num-val-equiv x y))
           (num-val-equiv x x)
           (implies (num-val-equiv x y)
                    (num-val-equiv y x))
           (implies (and (num-val-equiv x y)
                         (num-val-equiv y z))
                    (num-val-equiv x z)))
      :rule-classes (:equivalence))

    Theorem: num-val-equiv-implies-equal-num-val-fix-1

    (defthm num-val-equiv-implies-equal-num-val-fix-1
      (implies (num-val-equiv acl2::x x-equiv)
               (equal (num-val-fix acl2::x)
                      (num-val-fix x-equiv)))
      :rule-classes (:congruence))

    Theorem: num-val-fix-under-num-val-equiv

    (defthm num-val-fix-under-num-val-equiv
      (num-val-equiv (num-val-fix acl2::x)
                     acl2::x)
      :rule-classes (:rewrite :rewrite-quoted-constant))

    Theorem: equal-of-num-val-fix-1-forward-to-num-val-equiv

    (defthm equal-of-num-val-fix-1-forward-to-num-val-equiv
      (implies (equal (num-val-fix acl2::x) acl2::y)
               (num-val-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: equal-of-num-val-fix-2-forward-to-num-val-equiv

    (defthm equal-of-num-val-fix-2-forward-to-num-val-equiv
      (implies (equal acl2::x (num-val-fix acl2::y))
               (num-val-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: num-val-equiv-of-num-val-fix-1-forward

    (defthm num-val-equiv-of-num-val-fix-1-forward
      (implies (num-val-equiv (num-val-fix acl2::x)
                              acl2::y)
               (num-val-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: num-val-equiv-of-num-val-fix-2-forward

    (defthm num-val-equiv-of-num-val-fix-2-forward
      (implies (num-val-equiv acl2::x (num-val-fix acl2::y))
               (num-val-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: num-val-kind$inline-of-num-val-fix-x

    (defthm num-val-kind$inline-of-num-val-fix-x
      (equal (num-val-kind$inline (num-val-fix x))
             (num-val-kind$inline x)))

    Theorem: num-val-kind$inline-num-val-equiv-congruence-on-x

    (defthm num-val-kind$inline-num-val-equiv-congruence-on-x
      (implies (num-val-equiv x x-equiv)
               (equal (num-val-kind$inline x)
                      (num-val-kind$inline x-equiv)))
      :rule-classes :congruence)

    Theorem: consp-of-num-val-fix

    (defthm consp-of-num-val-fix
      (consp (num-val-fix x))
      :rule-classes :type-prescription)