• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
      • Apt
      • Zfc
      • Acre
      • Milawa
      • Smtlink
      • Abnf
        • Deftreeops
        • Defdefparse
        • Defgrammar
        • Tree-utilities
        • Notation
          • Syntax-abstraction
          • Semantics
          • Abstract-syntax
            • Convenience-constructors
              • /_
              • %x-
              • %d-
              • %b-
              • =_
              • =/_
                • Def-rule-const
                • =_-fn
                • =/_-fn
                • Repetition/element/rulename/charstring-p
                • <>
                • %x.
                • %d.
                • %b.
                • Repetition/element/rulename/charstring-listp
                • ?_
                • !_
                • Def-rule-const-fn
                • *_
                • 1*_
                • ?_-fn
                • /_-fn
                • !_-fn
                • Element/rulename-p
                • %x.-fn
                • %d.-fn
                • %b.-fn
              • Num-val
              • Char-val
              • Repeat-range
              • Rulename
              • Rule
              • Rulename-option
              • Num-base
              • Rule-option
              • Prose-val
              • Rulelist
              • Char-val-set
              • Rulename-set
              • Rulename-list
              • Grammar
              • Alt/conc/rep/elem
            • Core-rules
            • Concrete-syntax
          • Grammar-parser
          • Meta-circular-validation
          • Parsing-primitives-defresult
          • Parsing-primitives-seq
          • Operations
          • Examples
          • Differences-with-paper
          • Constructor-utilities
          • Grammar-printer
          • Parsing-tools
        • Vwsim
        • Isar
        • Wp-gen
        • Dimacs-reader
        • Pfcs
        • Legacy-defrstobj
        • Proof-checker-array
        • Soft
        • C
        • Farray
        • Rp-rewriter
        • Instant-runoff-voting
        • Imp-language
        • Sidekick
        • Leftist-trees
        • Java
        • Taspi
        • Bitcoin
        • Riscv
        • Des
        • Ethereum
        • X86isa
        • Sha-2
        • Yul
        • Zcash
        • Proof-checker-itp13
        • Regex
        • ACL2-programming-language
        • Json
        • Jfkr
        • Equational
        • Cryptography
        • Poseidon
        • Where-do-i-place-my-book
        • Axe
        • Bigmems
        • Builtins
        • Execloader
        • Aleo
        • Solidity
        • Paco
        • Concurrent-programs
        • Bls12-377-curves
      • Debugging
      • Std
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Convenience-constructors

    =/_

    Construct an incremental rule from a rule name and a variable number of concatenations.

    The name of this macro is inspired by the ABNF notation =/ for defining incremental rules.

    Macro: =/_

    (defmacro =/_ (rulename &rest concatenations)
      (cons '=/_-fn
            (cons rulename
                  (cons (cons 'list concatenations)
                        'nil))))

    Definitions and Theorems

    Function: =/_-fn

    (defun =/_-fn (rulename alternation)
      (declare (xargs :guard (and (rulenamep rulename)
                                  (alternationp alternation))))
      (make-rule :name (rulename-fix rulename)
                 :incremental t
                 :definiens (alternation-fix alternation)))

    Theorem: rulep-of-=/_-fn

    (defthm rulep-of-=/_-fn
      (b* ((rule (=/_-fn rulename alternation)))
        (rulep rule))
      :rule-classes :rewrite)

    Theorem: =/_-fn-of-rulename-fix-rulename

    (defthm =/_-fn-of-rulename-fix-rulename
      (equal (=/_-fn (rulename-fix rulename)
                     alternation)
             (=/_-fn rulename alternation)))

    Theorem: =/_-fn-rulename-equiv-congruence-on-rulename

    (defthm =/_-fn-rulename-equiv-congruence-on-rulename
      (implies (rulename-equiv rulename rulename-equiv)
               (equal (=/_-fn rulename alternation)
                      (=/_-fn rulename-equiv alternation)))
      :rule-classes :congruence)

    Theorem: =/_-fn-of-alternation-fix-alternation

    (defthm =/_-fn-of-alternation-fix-alternation
      (equal (=/_-fn rulename (alternation-fix alternation))
             (=/_-fn rulename alternation)))

    Theorem: =/_-fn-alternation-equiv-congruence-on-alternation

    (defthm =/_-fn-alternation-equiv-congruence-on-alternation
      (implies (alternation-equiv alternation alternation-equiv)
               (equal (=/_-fn rulename alternation)
                      (=/_-fn rulename alternation-equiv)))
      :rule-classes :congruence)