• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
      • Gl
      • Esim
      • Vl2014
        • Warnings
        • Primitives
        • Use-set
        • Syntax
        • Getting-started
        • Utilities
        • Loader
        • Transforms
          • Expression-sizing
          • Occform
          • Oprewrite
          • Expand-functions
          • Delayredux
          • Unparameterization
          • Caseelim
          • Split
          • Selresolve
          • Weirdint-elim
          • Vl-delta
          • Replicate-insts
          • Rangeresolve
          • Propagate
          • Clean-selects
          • Clean-params
          • Blankargs
          • Inline-mods
          • Expr-simp
          • Trunc
          • Always-top
            • Edgesynth
              • Vl-edgesynth-stmt-p
              • Vl-edgetable-p
                • Vl-always-edgesynth
                • Vl-edgesynth-merge-data-ifs
                • Vl-assignstmtlist->controls
                • Vl-assignstmtlist->lhses
                • Vl-assignstmtlist->rhses
                • Vl-edgesynth-flatten-data-ifs
                • Vl-edgesynth-pattern-match
                • Nedgeflop
                • Vl-edgesynth-make-data-inputs
                • Vl-edgesynth-make-clock-inputs
                • Vl-edgesynth-stmt-clklift
                • Vl-edgesynth-blockelim
                • Vl-alwayslist-edgesynth
                • Vl-edgesynth-create
                • Vl-edgesynth-classify-iftest
                • Vl-module-edgesynth
                • Vl-edgesynth-normalize-ifs
                • Vl-edgesynth-delays-okp
                • Vl-edgesynth-stmt-assigns
                • Vl-make-edgetable
                • Vl-edgesynth-sort-edges
                • Vl-modulelist-edgesynth
                • Vl-modulelist-edgesynth-aux
                • Vl-assignstmtlist-p
                • Vl-edgesynth-edgelist-p
                • Vl-assigncontrols-p
                • Vl-edgesynth-stmt-conditions
                • Vl-edgesynth-edge-p
                • Vl-design-edgesynth
                • Vl-edgesynth-get-delay
                • Vl-edgesynth-iftype-p
                • Edge-tables
              • Stmtrewrite
              • Cblock
              • Vl-always-convert-regports
              • Vl-always-convert-regs
              • Stmttemps
              • Edgesplit
              • Vl-always-check-reg
              • Vl-convert-regs
              • Latchsynth
              • Vl-always-check-regs
              • Vl-match-always-at-some-edges
              • Unelse
              • Vl-always-convert-reg
              • Vl-design-always-backend
              • Vl-stmt-guts
              • Vl-always-convert-regport
              • Vl-always-scary-regs
              • Eliminitial
              • Ifmerge
              • Vl-edge-control-p
              • Elimalways
            • Gatesplit
            • Gate-elim
            • Expression-optimization
            • Elim-supplies
            • Wildelim
            • Drop-blankports
            • Clean-warnings
            • Addinstnames
            • Custom-transform-hooks
            • Annotate
            • Latchcode
            • Elim-unused-vars
            • Problem-modules
          • Lint
          • Mlib
          • Server
          • Kit
          • Printer
          • Esim-vl
          • Well-formedness
        • Sv
        • Fgl
        • Vwsim
        • Vl
        • X86isa
        • Svl
        • Rtl
      • Software-verification
      • Math
      • Testing-utilities
    • Edgesynth

    Vl-edgetable-p

    Associates each edge name to the edge itself.

    This is an ordinary defalist.

    Function: vl-edgetable-p

    (defun vl-edgetable-p (x)
      (declare (xargs :guard t))
      (if (consp x)
          (and (consp (car x))
               (stringp (caar x))
               (vl-edgesynth-edge-p (cdar x))
               (vl-edgetable-p (cdr x)))
        t))

    Definitions and Theorems

    Function: vl-edgetable-p

    (defun vl-edgetable-p (x)
      (declare (xargs :guard t))
      (if (consp x)
          (and (consp (car x))
               (stringp (caar x))
               (vl-edgesynth-edge-p (cdar x))
               (vl-edgetable-p (cdr x)))
        t))

    Theorem: vl-edgetable-p-of-revappend

    (defthm vl-edgetable-p-of-revappend
      (equal (vl-edgetable-p (revappend acl2::x acl2::y))
             (and (vl-edgetable-p (list-fix acl2::x))
                  (vl-edgetable-p acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: vl-edgetable-p-of-remove

    (defthm vl-edgetable-p-of-remove
      (implies (vl-edgetable-p acl2::x)
               (vl-edgetable-p (remove acl2::a acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-edgetable-p-of-last

    (defthm vl-edgetable-p-of-last
      (implies (vl-edgetable-p (double-rewrite acl2::x))
               (vl-edgetable-p (last acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-edgetable-p-of-nthcdr

    (defthm vl-edgetable-p-of-nthcdr
      (implies (vl-edgetable-p (double-rewrite acl2::x))
               (vl-edgetable-p (nthcdr acl2::n acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-edgetable-p-of-butlast

    (defthm vl-edgetable-p-of-butlast
      (implies (vl-edgetable-p (double-rewrite acl2::x))
               (vl-edgetable-p (butlast acl2::x acl2::n)))
      :rule-classes ((:rewrite)))

    Theorem: vl-edgetable-p-of-update-nth

    (defthm vl-edgetable-p-of-update-nth
     (implies (vl-edgetable-p (double-rewrite acl2::x))
              (iff (vl-edgetable-p (update-nth acl2::n acl2::y acl2::x))
                   (and (and (consp acl2::y)
                             (stringp (car acl2::y))
                             (vl-edgesynth-edge-p (cdr acl2::y)))
                        (or (<= (nfix acl2::n) (len acl2::x))
                            (and (consp nil)
                                 (stringp (car nil))
                                 (vl-edgesynth-edge-p (cdr nil)))))))
     :rule-classes ((:rewrite)))

    Theorem: vl-edgetable-p-of-repeat

    (defthm vl-edgetable-p-of-repeat
      (iff (vl-edgetable-p (repeat acl2::n acl2::x))
           (or (and (consp acl2::x)
                    (stringp (car acl2::x))
                    (vl-edgesynth-edge-p (cdr acl2::x)))
               (zp acl2::n)))
      :rule-classes ((:rewrite)))

    Theorem: vl-edgetable-p-of-take

    (defthm vl-edgetable-p-of-take
      (implies (vl-edgetable-p (double-rewrite acl2::x))
               (iff (vl-edgetable-p (take acl2::n acl2::x))
                    (or (and (consp nil)
                             (stringp (car nil))
                             (vl-edgesynth-edge-p (cdr nil)))
                        (<= (nfix acl2::n) (len acl2::x)))))
      :rule-classes ((:rewrite)))

    Theorem: vl-edgetable-p-of-union-equal

    (defthm vl-edgetable-p-of-union-equal
      (equal (vl-edgetable-p (union-equal acl2::x acl2::y))
             (and (vl-edgetable-p (list-fix acl2::x))
                  (vl-edgetable-p (double-rewrite acl2::y))))
      :rule-classes ((:rewrite)))

    Theorem: vl-edgetable-p-of-intersection-equal-2

    (defthm vl-edgetable-p-of-intersection-equal-2
      (implies (vl-edgetable-p (double-rewrite acl2::y))
               (vl-edgetable-p (intersection-equal acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: vl-edgetable-p-of-intersection-equal-1

    (defthm vl-edgetable-p-of-intersection-equal-1
      (implies (vl-edgetable-p (double-rewrite acl2::x))
               (vl-edgetable-p (intersection-equal acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: vl-edgetable-p-of-set-difference-equal

    (defthm vl-edgetable-p-of-set-difference-equal
      (implies (vl-edgetable-p acl2::x)
               (vl-edgetable-p (set-difference-equal acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: vl-edgetable-p-set-equiv-congruence

    (defthm vl-edgetable-p-set-equiv-congruence
      (implies (set-equiv acl2::x acl2::y)
               (equal (vl-edgetable-p acl2::x)
                      (vl-edgetable-p acl2::y)))
      :rule-classes :congruence)

    Theorem: vl-edgetable-p-when-subsetp-equal

    (defthm vl-edgetable-p-when-subsetp-equal
      (and (implies (and (subsetp-equal acl2::x acl2::y)
                         (vl-edgetable-p acl2::y))
                    (vl-edgetable-p acl2::x))
           (implies (and (vl-edgetable-p acl2::y)
                         (subsetp-equal acl2::x acl2::y))
                    (vl-edgetable-p acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-edgetable-p-of-rcons

    (defthm vl-edgetable-p-of-rcons
      (iff (vl-edgetable-p (acl2::rcons acl2::a acl2::x))
           (and (and (consp acl2::a)
                     (stringp (car acl2::a))
                     (vl-edgesynth-edge-p (cdr acl2::a)))
                (vl-edgetable-p (list-fix acl2::x))))
      :rule-classes ((:rewrite)))

    Theorem: vl-edgetable-p-of-rev

    (defthm vl-edgetable-p-of-rev
      (equal (vl-edgetable-p (rev acl2::x))
             (vl-edgetable-p (list-fix acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-edgetable-p-of-duplicated-members

    (defthm vl-edgetable-p-of-duplicated-members
      (implies (vl-edgetable-p acl2::x)
               (vl-edgetable-p (duplicated-members acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-edgetable-p-of-difference

    (defthm vl-edgetable-p-of-difference
      (implies (vl-edgetable-p acl2::x)
               (vl-edgetable-p (difference acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: vl-edgetable-p-of-intersect-2

    (defthm vl-edgetable-p-of-intersect-2
      (implies (vl-edgetable-p acl2::y)
               (vl-edgetable-p (intersect acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: vl-edgetable-p-of-intersect-1

    (defthm vl-edgetable-p-of-intersect-1
      (implies (vl-edgetable-p acl2::x)
               (vl-edgetable-p (intersect acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: vl-edgetable-p-of-union

    (defthm vl-edgetable-p-of-union
      (iff (vl-edgetable-p (union acl2::x acl2::y))
           (and (vl-edgetable-p (sfix acl2::x))
                (vl-edgetable-p (sfix acl2::y))))
      :rule-classes ((:rewrite)))

    Theorem: vl-edgetable-p-of-mergesort

    (defthm vl-edgetable-p-of-mergesort
      (iff (vl-edgetable-p (mergesort acl2::x))
           (vl-edgetable-p (list-fix acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-edgetable-p-of-delete

    (defthm vl-edgetable-p-of-delete
      (implies (vl-edgetable-p acl2::x)
               (vl-edgetable-p (delete acl2::k acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-edgetable-p-of-insert

    (defthm vl-edgetable-p-of-insert
      (iff (vl-edgetable-p (insert acl2::a acl2::x))
           (and (vl-edgetable-p (sfix acl2::x))
                (and (consp acl2::a)
                     (stringp (car acl2::a))
                     (vl-edgesynth-edge-p (cdr acl2::a)))))
      :rule-classes ((:rewrite)))

    Theorem: vl-edgetable-p-of-sfix

    (defthm vl-edgetable-p-of-sfix
      (iff (vl-edgetable-p (sfix acl2::x))
           (or (vl-edgetable-p acl2::x)
               (not (setp acl2::x))))
      :rule-classes ((:rewrite)))

    Theorem: vl-edgetable-p-of-list-fix

    (defthm vl-edgetable-p-of-list-fix
      (equal (vl-edgetable-p (list-fix acl2::x))
             (vl-edgetable-p acl2::x))
      :rule-classes ((:rewrite)))

    Theorem: vl-edgetable-p-of-append

    (defthm vl-edgetable-p-of-append
      (equal (vl-edgetable-p (append acl2::a acl2::b))
             (and (vl-edgetable-p acl2::a)
                  (vl-edgetable-p acl2::b)))
      :rule-classes ((:rewrite)))

    Theorem: vl-edgetable-p-when-not-consp

    (defthm vl-edgetable-p-when-not-consp
      (implies (not (consp acl2::x))
               (vl-edgetable-p acl2::x))
      :rule-classes ((:rewrite)))

    Theorem: vl-edgetable-p-of-cdr-when-vl-edgetable-p

    (defthm vl-edgetable-p-of-cdr-when-vl-edgetable-p
      (implies (vl-edgetable-p (double-rewrite acl2::x))
               (vl-edgetable-p (cdr acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-edgetable-p-of-cons

    (defthm vl-edgetable-p-of-cons
      (equal (vl-edgetable-p (cons acl2::a acl2::x))
             (and (and (consp acl2::a)
                       (stringp (car acl2::a))
                       (vl-edgesynth-edge-p (cdr acl2::a)))
                  (vl-edgetable-p acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-edgetable-p-of-make-fal

    (defthm vl-edgetable-p-of-make-fal
      (implies (and (vl-edgetable-p acl2::x)
                    (vl-edgetable-p acl2::y))
               (vl-edgetable-p (make-fal acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: vl-edgesynth-edge-p-of-cdr-when-member-equal-of-vl-edgetable-p

    (defthm
         vl-edgesynth-edge-p-of-cdr-when-member-equal-of-vl-edgetable-p
      (and (implies (and (vl-edgetable-p acl2::x)
                         (member-equal acl2::a acl2::x))
                    (vl-edgesynth-edge-p (cdr acl2::a)))
           (implies (and (member-equal acl2::a acl2::x)
                         (vl-edgetable-p acl2::x))
                    (vl-edgesynth-edge-p (cdr acl2::a))))
      :rule-classes ((:rewrite)))

    Theorem: stringp-of-car-when-member-equal-of-vl-edgetable-p

    (defthm stringp-of-car-when-member-equal-of-vl-edgetable-p
      (and (implies (and (vl-edgetable-p acl2::x)
                         (member-equal acl2::a acl2::x))
                    (stringp (car acl2::a)))
           (implies (and (member-equal acl2::a acl2::x)
                         (vl-edgetable-p acl2::x))
                    (stringp (car acl2::a))))
      :rule-classes ((:rewrite)))

    Theorem: consp-when-member-equal-of-vl-edgetable-p

    (defthm consp-when-member-equal-of-vl-edgetable-p
      (implies (and (vl-edgetable-p acl2::x)
                    (member-equal acl2::a acl2::x))
               (consp acl2::a))
      :rule-classes
      ((:rewrite :backchain-limit-lst (0 0))
       (:rewrite :backchain-limit-lst (0 0)
                 :corollary (implies (if (member-equal acl2::a acl2::x)
                                         (vl-edgetable-p acl2::x)
                                       'nil)
                                     (consp acl2::a)))))

    Theorem: vl-edgetable-p-of-fast-alist-clean

    (defthm vl-edgetable-p-of-fast-alist-clean
      (implies (vl-edgetable-p acl2::x)
               (vl-edgetable-p (fast-alist-clean acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-edgetable-p-of-hons-shrink-alist

    (defthm vl-edgetable-p-of-hons-shrink-alist
      (implies (and (vl-edgetable-p acl2::x)
                    (vl-edgetable-p acl2::y))
               (vl-edgetable-p (hons-shrink-alist acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: vl-edgetable-p-of-hons-acons

    (defthm vl-edgetable-p-of-hons-acons
      (equal (vl-edgetable-p (hons-acons acl2::a acl2::n acl2::x))
             (and (stringp acl2::a)
                  (vl-edgesynth-edge-p acl2::n)
                  (vl-edgetable-p acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-edgesynth-edge-p-of-cdr-of-hons-assoc-equal-when-vl-edgetable-p

    (defthm
     vl-edgesynth-edge-p-of-cdr-of-hons-assoc-equal-when-vl-edgetable-p
     (implies
      (vl-edgetable-p acl2::x)
      (iff
          (vl-edgesynth-edge-p (cdr (hons-assoc-equal acl2::k acl2::x)))
          (hons-assoc-equal acl2::k acl2::x)))
     :rule-classes ((:rewrite)))

    Theorem: vl-edgesynth-edge-p-of-cdar-when-vl-edgetable-p

    (defthm vl-edgesynth-edge-p-of-cdar-when-vl-edgetable-p
      (implies (vl-edgetable-p acl2::x)
               (iff (vl-edgesynth-edge-p (cdar acl2::x))
                    (consp acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: stringp-of-caar-when-vl-edgetable-p

    (defthm stringp-of-caar-when-vl-edgetable-p
      (implies (vl-edgetable-p acl2::x)
               (iff (stringp (caar acl2::x))
                    (consp acl2::x)))
      :rule-classes ((:rewrite)))