• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
      • Gl
      • Esim
      • Vl2014
        • Warnings
        • Primitives
        • Use-set
        • Syntax
        • Getting-started
        • Utilities
        • Loader
        • Transforms
        • Lint
        • Mlib
          • Scopestack
          • Filtering-by-name
          • Vl-namefactory
          • Substitution
          • Allexprs
          • Hid-tools
          • Vl-consteval
          • Range-tools
          • Lvalexprs
          • Hierarchy
            • Vl-remove-unnecessary-elements
            • Vl-necessary-elements-transitive
            • Vl-dependent-elements-transitive
            • Vl-necessary-elements-direct
            • Vl-modulelist-everinstanced
            • Vl-dependent-elements-direct
            • Vl-modulelist-toplevel
            • Vl-design-deporder-modules
            • Vl-design-check-complete
            • Vl-design-upgraph
            • Immdeps
              • Immdeps-main
              • Vl-immdeps
              • Immdeps-top
              • Vl-immdepgraph
              • Vl-depgraph
                • Vl-depgraph-p
                  • Vl-depgraph-fix
                  • Vl-depgraph-equiv
                  • Vl-depgraph-p-of-invert
                  • String-listp-of-transdeps
              • Vl-design-downgraph
              • Vl-collect-dependencies
              • Vl-hierarchy-free
            • Finding-by-name
            • Expr-tools
            • Expr-slicing
            • Stripping-functions
            • Stmt-tools
            • Modnamespace
            • Vl-parse-expr-from-str
            • Welltyped
            • Reordering-by-name
            • Flat-warnings
            • Genblob
            • Expr-building
            • Datatype-tools
            • Syscalls
            • Relocate
            • Expr-cleaning
            • Namemangle
            • Caremask
            • Port-tools
            • Lvalues
          • Server
          • Kit
          • Printer
          • Esim-vl
          • Well-formedness
        • Sv
        • Fgl
        • Vwsim
        • Vl
        • X86isa
        • Svl
        • Rtl
      • Software-verification
      • Math
      • Testing-utilities
    • Vl-depgraph

    Vl-depgraph-p

    Recognizer for vl-depgraph.

    Signature
    (vl-depgraph-p x) → *

    Definitions and Theorems

    Function: vl-depgraph-p

    (defun vl-depgraph-p (x)
      (declare (xargs :guard t))
      (let ((__function__ 'vl-depgraph-p))
        (declare (ignorable __function__))
        (if (atom x)
            t
          (and (consp (car x))
               (stringp (caar x))
               (string-listp (cdar x))
               (vl-depgraph-p (cdr x))))))

    Theorem: vl-depgraph-p-of-revappend

    (defthm vl-depgraph-p-of-revappend
      (equal (vl-depgraph-p (revappend acl2::x acl2::y))
             (and (vl-depgraph-p (list-fix acl2::x))
                  (vl-depgraph-p acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: vl-depgraph-p-of-remove

    (defthm vl-depgraph-p-of-remove
      (implies (vl-depgraph-p acl2::x)
               (vl-depgraph-p (remove acl2::a acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-depgraph-p-of-last

    (defthm vl-depgraph-p-of-last
      (implies (vl-depgraph-p (double-rewrite acl2::x))
               (vl-depgraph-p (last acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-depgraph-p-of-nthcdr

    (defthm vl-depgraph-p-of-nthcdr
      (implies (vl-depgraph-p (double-rewrite acl2::x))
               (vl-depgraph-p (nthcdr acl2::n acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-depgraph-p-of-butlast

    (defthm vl-depgraph-p-of-butlast
      (implies (vl-depgraph-p (double-rewrite acl2::x))
               (vl-depgraph-p (butlast acl2::x acl2::n)))
      :rule-classes ((:rewrite)))

    Theorem: vl-depgraph-p-of-update-nth

    (defthm vl-depgraph-p-of-update-nth
      (implies (vl-depgraph-p (double-rewrite acl2::x))
               (iff (vl-depgraph-p (update-nth acl2::n acl2::y acl2::x))
                    (and (and (consp acl2::y)
                              (stringp (car acl2::y))
                              (string-listp (cdr acl2::y)))
                         (or (<= (nfix acl2::n) (len acl2::x))
                             (and (consp nil)
                                  (stringp (car nil))
                                  (string-listp (cdr nil)))))))
      :rule-classes ((:rewrite)))

    Theorem: vl-depgraph-p-of-repeat

    (defthm vl-depgraph-p-of-repeat
      (iff (vl-depgraph-p (repeat acl2::n acl2::x))
           (or (and (consp acl2::x)
                    (stringp (car acl2::x))
                    (string-listp (cdr acl2::x)))
               (zp acl2::n)))
      :rule-classes ((:rewrite)))

    Theorem: vl-depgraph-p-of-take

    (defthm vl-depgraph-p-of-take
      (implies (vl-depgraph-p (double-rewrite acl2::x))
               (iff (vl-depgraph-p (take acl2::n acl2::x))
                    (or (and (consp nil)
                             (stringp (car nil))
                             (string-listp (cdr nil)))
                        (<= (nfix acl2::n) (len acl2::x)))))
      :rule-classes ((:rewrite)))

    Theorem: vl-depgraph-p-of-union-equal

    (defthm vl-depgraph-p-of-union-equal
      (equal (vl-depgraph-p (union-equal acl2::x acl2::y))
             (and (vl-depgraph-p (list-fix acl2::x))
                  (vl-depgraph-p (double-rewrite acl2::y))))
      :rule-classes ((:rewrite)))

    Theorem: vl-depgraph-p-of-intersection-equal-2

    (defthm vl-depgraph-p-of-intersection-equal-2
      (implies (vl-depgraph-p (double-rewrite acl2::y))
               (vl-depgraph-p (intersection-equal acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: vl-depgraph-p-of-intersection-equal-1

    (defthm vl-depgraph-p-of-intersection-equal-1
      (implies (vl-depgraph-p (double-rewrite acl2::x))
               (vl-depgraph-p (intersection-equal acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: vl-depgraph-p-of-set-difference-equal

    (defthm vl-depgraph-p-of-set-difference-equal
      (implies (vl-depgraph-p acl2::x)
               (vl-depgraph-p (set-difference-equal acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: vl-depgraph-p-set-equiv-congruence

    (defthm vl-depgraph-p-set-equiv-congruence
      (implies (set-equiv acl2::x acl2::y)
               (equal (vl-depgraph-p acl2::x)
                      (vl-depgraph-p acl2::y)))
      :rule-classes :congruence)

    Theorem: vl-depgraph-p-when-subsetp-equal

    (defthm vl-depgraph-p-when-subsetp-equal
      (and (implies (and (subsetp-equal acl2::x acl2::y)
                         (vl-depgraph-p acl2::y))
                    (vl-depgraph-p acl2::x))
           (implies (and (vl-depgraph-p acl2::y)
                         (subsetp-equal acl2::x acl2::y))
                    (vl-depgraph-p acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-depgraph-p-of-rcons

    (defthm vl-depgraph-p-of-rcons
      (iff (vl-depgraph-p (acl2::rcons acl2::a acl2::x))
           (and (and (consp acl2::a)
                     (stringp (car acl2::a))
                     (string-listp (cdr acl2::a)))
                (vl-depgraph-p (list-fix acl2::x))))
      :rule-classes ((:rewrite)))

    Theorem: vl-depgraph-p-of-rev

    (defthm vl-depgraph-p-of-rev
      (equal (vl-depgraph-p (rev acl2::x))
             (vl-depgraph-p (list-fix acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-depgraph-p-of-duplicated-members

    (defthm vl-depgraph-p-of-duplicated-members
      (implies (vl-depgraph-p acl2::x)
               (vl-depgraph-p (duplicated-members acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-depgraph-p-of-difference

    (defthm vl-depgraph-p-of-difference
      (implies (vl-depgraph-p acl2::x)
               (vl-depgraph-p (difference acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: vl-depgraph-p-of-intersect-2

    (defthm vl-depgraph-p-of-intersect-2
      (implies (vl-depgraph-p acl2::y)
               (vl-depgraph-p (intersect acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: vl-depgraph-p-of-intersect-1

    (defthm vl-depgraph-p-of-intersect-1
      (implies (vl-depgraph-p acl2::x)
               (vl-depgraph-p (intersect acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: vl-depgraph-p-of-union

    (defthm vl-depgraph-p-of-union
      (iff (vl-depgraph-p (union acl2::x acl2::y))
           (and (vl-depgraph-p (sfix acl2::x))
                (vl-depgraph-p (sfix acl2::y))))
      :rule-classes ((:rewrite)))

    Theorem: vl-depgraph-p-of-mergesort

    (defthm vl-depgraph-p-of-mergesort
      (iff (vl-depgraph-p (mergesort acl2::x))
           (vl-depgraph-p (list-fix acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-depgraph-p-of-delete

    (defthm vl-depgraph-p-of-delete
      (implies (vl-depgraph-p acl2::x)
               (vl-depgraph-p (delete acl2::k acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-depgraph-p-of-insert

    (defthm vl-depgraph-p-of-insert
      (iff (vl-depgraph-p (insert acl2::a acl2::x))
           (and (vl-depgraph-p (sfix acl2::x))
                (and (consp acl2::a)
                     (stringp (car acl2::a))
                     (string-listp (cdr acl2::a)))))
      :rule-classes ((:rewrite)))

    Theorem: vl-depgraph-p-of-sfix

    (defthm vl-depgraph-p-of-sfix
      (iff (vl-depgraph-p (sfix acl2::x))
           (or (vl-depgraph-p acl2::x)
               (not (setp acl2::x))))
      :rule-classes ((:rewrite)))

    Theorem: vl-depgraph-p-of-list-fix

    (defthm vl-depgraph-p-of-list-fix
      (equal (vl-depgraph-p (list-fix acl2::x))
             (vl-depgraph-p acl2::x))
      :rule-classes ((:rewrite)))

    Theorem: vl-depgraph-p-of-append

    (defthm vl-depgraph-p-of-append
      (equal (vl-depgraph-p (append acl2::a acl2::b))
             (and (vl-depgraph-p acl2::a)
                  (vl-depgraph-p acl2::b)))
      :rule-classes ((:rewrite)))

    Theorem: vl-depgraph-p-when-not-consp

    (defthm vl-depgraph-p-when-not-consp
      (implies (not (consp acl2::x))
               (vl-depgraph-p acl2::x))
      :rule-classes ((:rewrite)))

    Theorem: vl-depgraph-p-of-cdr-when-vl-depgraph-p

    (defthm vl-depgraph-p-of-cdr-when-vl-depgraph-p
      (implies (vl-depgraph-p (double-rewrite acl2::x))
               (vl-depgraph-p (cdr acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-depgraph-p-of-cons

    (defthm vl-depgraph-p-of-cons
      (equal (vl-depgraph-p (cons acl2::a acl2::x))
             (and (and (consp acl2::a)
                       (stringp (car acl2::a))
                       (string-listp (cdr acl2::a)))
                  (vl-depgraph-p acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-depgraph-p-of-make-fal

    (defthm vl-depgraph-p-of-make-fal
      (implies (and (vl-depgraph-p acl2::x)
                    (vl-depgraph-p acl2::y))
               (vl-depgraph-p (make-fal acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: string-listp-of-cdr-when-member-equal-of-vl-depgraph-p

    (defthm string-listp-of-cdr-when-member-equal-of-vl-depgraph-p
      (and (implies (and (vl-depgraph-p acl2::x)
                         (member-equal acl2::a acl2::x))
                    (string-listp (cdr acl2::a)))
           (implies (and (member-equal acl2::a acl2::x)
                         (vl-depgraph-p acl2::x))
                    (string-listp (cdr acl2::a))))
      :rule-classes ((:rewrite)))

    Theorem: stringp-of-car-when-member-equal-of-vl-depgraph-p

    (defthm stringp-of-car-when-member-equal-of-vl-depgraph-p
      (and (implies (and (vl-depgraph-p acl2::x)
                         (member-equal acl2::a acl2::x))
                    (stringp (car acl2::a)))
           (implies (and (member-equal acl2::a acl2::x)
                         (vl-depgraph-p acl2::x))
                    (stringp (car acl2::a))))
      :rule-classes ((:rewrite)))

    Theorem: consp-when-member-equal-of-vl-depgraph-p

    (defthm consp-when-member-equal-of-vl-depgraph-p
      (implies (and (vl-depgraph-p acl2::x)
                    (member-equal acl2::a acl2::x))
               (consp acl2::a))
      :rule-classes
      ((:rewrite :backchain-limit-lst (0 0))
       (:rewrite :backchain-limit-lst (0 0)
                 :corollary (implies (if (member-equal acl2::a acl2::x)
                                         (vl-depgraph-p acl2::x)
                                       'nil)
                                     (consp acl2::a)))))

    Theorem: string-listp-of-cdr-of-assoc-when-vl-depgraph-p

    (defthm string-listp-of-cdr-of-assoc-when-vl-depgraph-p
      (implies (vl-depgraph-p acl2::x)
               (string-listp (cdr (assoc-equal acl2::k acl2::x))))
      :rule-classes ((:rewrite)))

    Theorem: vl-depgraph-p-of-fast-alist-clean

    (defthm vl-depgraph-p-of-fast-alist-clean
      (implies (vl-depgraph-p acl2::x)
               (vl-depgraph-p (fast-alist-clean acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-depgraph-p-of-hons-shrink-alist

    (defthm vl-depgraph-p-of-hons-shrink-alist
      (implies (and (vl-depgraph-p acl2::x)
                    (vl-depgraph-p acl2::y))
               (vl-depgraph-p (hons-shrink-alist acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: vl-depgraph-p-of-hons-acons

    (defthm vl-depgraph-p-of-hons-acons
      (equal (vl-depgraph-p (hons-acons acl2::a acl2::n acl2::x))
             (and (stringp acl2::a)
                  (string-listp acl2::n)
                  (vl-depgraph-p acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: string-listp-of-cdr-of-hons-assoc-equal-when-vl-depgraph-p

    (defthm string-listp-of-cdr-of-hons-assoc-equal-when-vl-depgraph-p
      (implies (vl-depgraph-p acl2::x)
               (string-listp (cdr (hons-assoc-equal acl2::k acl2::x))))
      :rule-classes ((:rewrite)))

    Theorem: stringp-of-caar-when-vl-depgraph-p

    (defthm stringp-of-caar-when-vl-depgraph-p
      (implies (vl-depgraph-p acl2::x)
               (iff (stringp (caar acl2::x))
                    (consp acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: string-listp-of-cdar-when-vl-depgraph-p

    (defthm string-listp-of-cdar-when-vl-depgraph-p
      (implies (vl-depgraph-p acl2::x)
               (string-listp (cdar acl2::x)))
      :rule-classes ((:rewrite)))