• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
      • Gl
      • Esim
      • Vl2014
      • Sv
      • Fgl
      • Vwsim
      • Vl
        • Syntax
        • Loader
          • Preprocessor
            • Vl-iframe
            • Preprocessor-ifdef-minutia
            • Vl-preprocess
            • Vl-preprocess-loop
            • Vl-includeskips
            • Vl-read-until-end-of-define
            • Vl-define-formallist->defaults
            • Vl-define
            • Vl-expand-define
            • Vl-read-include
            • Vl-substitute-into-macro-text
            • Vl-process-ifdef
            • Ppst
            • Vl-read-define-default-text
            • Vl-process-define
            • Preprocessor-include-minutia
            • Vl-trim-for-preproc
            • Vl-line-up-define-formals-and-actuals
            • Vl-process-undef
            • Vl-split-define-text
            • Vl-def-context
            • Vl-process-endif
            • Scan-backward-for-non-whitespace
            • Vl-ifdef-context
            • Scan-backward-for-whitespace
            • Vl-atvl-atts-text
            • Scan-for-non-whitespace
            • Vl-check-remaining-formals-all-have-defaults
            • Vl-process-else
            • Vl-is-compiler-directive-p
            • Vl-includeskips-controller-lookup
            • Vl-ifdef-use-map
            • Vl-defines
              • Vl-defines-p
                • Vl-defines-fix
                • Vl-defines-equiv
              • Vl-def-use-map
              • Vl-nice-bytes
              • Vl-safe-previous-n
              • Vl-safe-next-n
              • Vl-ppst-pad
              • Vl-filename-to-string-literal
              • Vl-maybe-update-filemap
              • *vl-preprocess-clock*
              • Vl-ppst->warnings
              • Vl-ppst->iskips
              • Vl-ppst->ifdefmap
              • Vl-ppst->idcache
              • Vl-istack
              • Vl-ppst->istack
              • Vl-ppst->includes
              • Vl-ppst->filemap
              • Vl-ppst->defmap
              • Vl-ppst->defines
              • Vl-ppst->config
              • Vl-ppst->bytes
              • Vl-ppst->activep
              • Vl-ppst->acc
              • Vl-ppst-record-ifdef-use
              • Vl-ppst-record-def-use
              • Vl-ifdef-context-list
              • Vl-def-context-list
              • Vl-ppst-update-warnings
              • Vl-ppst-update-istack
              • Vl-ppst-update-iskips
              • Vl-ppst-update-includes
              • Vl-ppst-update-ifdefmap
              • Vl-ppst-update-idcache
              • Vl-ppst-update-filemap
              • Vl-ppst-update-defmap
              • Vl-ppst-update-defines
              • Vl-ppst-update-config
              • Vl-ppst-update-activep
              • Vl-ppst-update-bytes
              • Vl-ppst-update-acc
              • Vl-ppst-unsound-nreverse-acc
            • Vl-loadconfig
            • Vl-loadstate
            • Lexer
            • Parser
            • Vl-load-merge-descriptions
            • Vl-find-basename/extension
            • Vl-load-file
            • Vl-loadresult
            • Scope-of-defines
            • Vl-find-file
            • Vl-flush-out-descriptions
            • Vl-description
            • Vl-read-file
            • Vl-includeskips-report-gather
            • Vl-load-main
            • Extended-characters
            • Vl-load
            • Vl-load-description
            • Vl-descriptions-left-to-load
            • Inject-warnings
            • Vl-preprocess-debug
            • Vl-write-preprocessor-debug-file
            • Vl-read-file-report-gather
            • Vl-load-descriptions
            • Vl-load-files
            • Translate-off
            • Vl-load-read-file-hook
            • Vl-read-file-report
            • Vl-loadstate-pad
            • Vl-load-summary
            • Vl-collect-modules-from-descriptions
            • Vl-loadstate->warnings
            • Vl-iskips-report
            • Vl-descriptionlist
          • Warnings
          • Getting-started
          • Utilities
          • Printer
          • Kit
          • Mlib
          • Transforms
        • X86isa
        • Svl
        • Rtl
      • Software-verification
      • Math
      • Testing-utilities
    • Vl-defines

    Vl-defines-p

    Recognizer for vl-defines.

    Signature
    (vl-defines-p x) → *

    Definitions and Theorems

    Function: vl-defines-p

    (defun vl-defines-p (x)
      (declare (xargs :guard t))
      (let ((__function__ 'vl-defines-p))
        (declare (ignorable __function__))
        (if (atom x)
            (eq x nil)
          (and (consp (car x))
               (stringp (caar x))
               (vl-maybe-define-p (cdar x))
               (vl-defines-p (cdr x))))))

    Theorem: vl-defines-p-of-revappend

    (defthm vl-defines-p-of-revappend
      (equal (vl-defines-p (revappend acl2::x acl2::y))
             (and (vl-defines-p (list-fix acl2::x))
                  (vl-defines-p acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: vl-defines-p-of-remove

    (defthm vl-defines-p-of-remove
      (implies (vl-defines-p acl2::x)
               (vl-defines-p (remove acl2::a acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-defines-p-of-last

    (defthm vl-defines-p-of-last
      (implies (vl-defines-p (double-rewrite acl2::x))
               (vl-defines-p (last acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-defines-p-of-nthcdr

    (defthm vl-defines-p-of-nthcdr
      (implies (vl-defines-p (double-rewrite acl2::x))
               (vl-defines-p (nthcdr acl2::n acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-defines-p-of-butlast

    (defthm vl-defines-p-of-butlast
      (implies (vl-defines-p (double-rewrite acl2::x))
               (vl-defines-p (butlast acl2::x acl2::n)))
      :rule-classes ((:rewrite)))

    Theorem: vl-defines-p-of-update-nth

    (defthm vl-defines-p-of-update-nth
      (implies (vl-defines-p (double-rewrite acl2::x))
               (iff (vl-defines-p (update-nth acl2::n acl2::y acl2::x))
                    (and (and (consp acl2::y)
                              (stringp (car acl2::y))
                              (vl-maybe-define-p (cdr acl2::y)))
                         (or (<= (nfix acl2::n) (len acl2::x))
                             (and (consp nil)
                                  (stringp (car nil))
                                  (vl-maybe-define-p (cdr nil)))))))
      :rule-classes ((:rewrite)))

    Theorem: vl-defines-p-of-repeat

    (defthm vl-defines-p-of-repeat
      (iff (vl-defines-p (repeat acl2::n acl2::x))
           (or (and (consp acl2::x)
                    (stringp (car acl2::x))
                    (vl-maybe-define-p (cdr acl2::x)))
               (zp acl2::n)))
      :rule-classes ((:rewrite)))

    Theorem: vl-defines-p-of-take

    (defthm vl-defines-p-of-take
      (implies (vl-defines-p (double-rewrite acl2::x))
               (iff (vl-defines-p (take acl2::n acl2::x))
                    (or (and (consp nil)
                             (stringp (car nil))
                             (vl-maybe-define-p (cdr nil)))
                        (<= (nfix acl2::n) (len acl2::x)))))
      :rule-classes ((:rewrite)))

    Theorem: vl-defines-p-of-union-equal

    (defthm vl-defines-p-of-union-equal
      (equal (vl-defines-p (union-equal acl2::x acl2::y))
             (and (vl-defines-p (list-fix acl2::x))
                  (vl-defines-p (double-rewrite acl2::y))))
      :rule-classes ((:rewrite)))

    Theorem: vl-defines-p-of-intersection-equal-2

    (defthm vl-defines-p-of-intersection-equal-2
      (implies (vl-defines-p (double-rewrite acl2::y))
               (vl-defines-p (intersection-equal acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: vl-defines-p-of-intersection-equal-1

    (defthm vl-defines-p-of-intersection-equal-1
      (implies (vl-defines-p (double-rewrite acl2::x))
               (vl-defines-p (intersection-equal acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: vl-defines-p-of-set-difference-equal

    (defthm vl-defines-p-of-set-difference-equal
      (implies (vl-defines-p acl2::x)
               (vl-defines-p (set-difference-equal acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: vl-defines-p-when-subsetp-equal

    (defthm vl-defines-p-when-subsetp-equal
      (and (implies (and (subsetp-equal acl2::x acl2::y)
                         (vl-defines-p acl2::y))
                    (equal (vl-defines-p acl2::x)
                           (true-listp acl2::x)))
           (implies (and (vl-defines-p acl2::y)
                         (subsetp-equal acl2::x acl2::y))
                    (equal (vl-defines-p acl2::x)
                           (true-listp acl2::x))))
      :rule-classes ((:rewrite)))

    Theorem: vl-defines-p-of-rcons

    (defthm vl-defines-p-of-rcons
      (iff (vl-defines-p (acl2::rcons acl2::a acl2::x))
           (and (and (consp acl2::a)
                     (stringp (car acl2::a))
                     (vl-maybe-define-p (cdr acl2::a)))
                (vl-defines-p (list-fix acl2::x))))
      :rule-classes ((:rewrite)))

    Theorem: vl-defines-p-of-append

    (defthm vl-defines-p-of-append
      (equal (vl-defines-p (append acl2::a acl2::b))
             (and (vl-defines-p (list-fix acl2::a))
                  (vl-defines-p acl2::b)))
      :rule-classes ((:rewrite)))

    Theorem: vl-defines-p-of-rev

    (defthm vl-defines-p-of-rev
      (equal (vl-defines-p (rev acl2::x))
             (vl-defines-p (list-fix acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-defines-p-of-duplicated-members

    (defthm vl-defines-p-of-duplicated-members
      (implies (vl-defines-p acl2::x)
               (vl-defines-p (duplicated-members acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-defines-p-of-difference

    (defthm vl-defines-p-of-difference
      (implies (vl-defines-p acl2::x)
               (vl-defines-p (difference acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: vl-defines-p-of-intersect-2

    (defthm vl-defines-p-of-intersect-2
      (implies (vl-defines-p acl2::y)
               (vl-defines-p (intersect acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: vl-defines-p-of-intersect-1

    (defthm vl-defines-p-of-intersect-1
      (implies (vl-defines-p acl2::x)
               (vl-defines-p (intersect acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: vl-defines-p-of-union

    (defthm vl-defines-p-of-union
      (iff (vl-defines-p (union acl2::x acl2::y))
           (and (vl-defines-p (sfix acl2::x))
                (vl-defines-p (sfix acl2::y))))
      :rule-classes ((:rewrite)))

    Theorem: vl-defines-p-of-mergesort

    (defthm vl-defines-p-of-mergesort
      (iff (vl-defines-p (mergesort acl2::x))
           (vl-defines-p (list-fix acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-defines-p-of-delete

    (defthm vl-defines-p-of-delete
      (implies (vl-defines-p acl2::x)
               (vl-defines-p (delete acl2::k acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-defines-p-of-insert

    (defthm vl-defines-p-of-insert
      (iff (vl-defines-p (insert acl2::a acl2::x))
           (and (vl-defines-p (sfix acl2::x))
                (and (consp acl2::a)
                     (stringp (car acl2::a))
                     (vl-maybe-define-p (cdr acl2::a)))))
      :rule-classes ((:rewrite)))

    Theorem: vl-defines-p-of-sfix

    (defthm vl-defines-p-of-sfix
      (iff (vl-defines-p (sfix acl2::x))
           (or (vl-defines-p acl2::x)
               (not (setp acl2::x))))
      :rule-classes ((:rewrite)))

    Theorem: vl-defines-p-of-list-fix

    (defthm vl-defines-p-of-list-fix
      (implies (vl-defines-p acl2::x)
               (vl-defines-p (list-fix acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: true-listp-when-vl-defines-p-compound-recognizer

    (defthm true-listp-when-vl-defines-p-compound-recognizer
      (implies (vl-defines-p acl2::x)
               (true-listp acl2::x))
      :rule-classes :compound-recognizer)

    Theorem: vl-defines-p-when-not-consp

    (defthm vl-defines-p-when-not-consp
      (implies (not (consp acl2::x))
               (equal (vl-defines-p acl2::x)
                      (not acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-defines-p-of-cdr-when-vl-defines-p

    (defthm vl-defines-p-of-cdr-when-vl-defines-p
      (implies (vl-defines-p (double-rewrite acl2::x))
               (vl-defines-p (cdr acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-defines-p-of-cons

    (defthm vl-defines-p-of-cons
      (equal (vl-defines-p (cons acl2::a acl2::x))
             (and (and (consp acl2::a)
                       (stringp (car acl2::a))
                       (vl-maybe-define-p (cdr acl2::a)))
                  (vl-defines-p acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-defines-p-of-make-fal

    (defthm vl-defines-p-of-make-fal
      (implies (and (vl-defines-p acl2::x)
                    (vl-defines-p acl2::y))
               (vl-defines-p (make-fal acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: vl-maybe-define-p-of-cdr-when-member-equal-of-vl-defines-p

    (defthm vl-maybe-define-p-of-cdr-when-member-equal-of-vl-defines-p
      (and (implies (and (vl-defines-p acl2::x)
                         (member-equal acl2::a acl2::x))
                    (vl-maybe-define-p (cdr acl2::a)))
           (implies (and (member-equal acl2::a acl2::x)
                         (vl-defines-p acl2::x))
                    (vl-maybe-define-p (cdr acl2::a))))
      :rule-classes ((:rewrite)))

    Theorem: stringp-of-car-when-member-equal-of-vl-defines-p

    (defthm stringp-of-car-when-member-equal-of-vl-defines-p
      (and (implies (and (vl-defines-p acl2::x)
                         (member-equal acl2::a acl2::x))
                    (stringp (car acl2::a)))
           (implies (and (member-equal acl2::a acl2::x)
                         (vl-defines-p acl2::x))
                    (stringp (car acl2::a))))
      :rule-classes ((:rewrite)))

    Theorem: consp-when-member-equal-of-vl-defines-p

    (defthm consp-when-member-equal-of-vl-defines-p
      (implies (and (vl-defines-p acl2::x)
                    (member-equal acl2::a acl2::x))
               (consp acl2::a))
      :rule-classes
      ((:rewrite :backchain-limit-lst (0 0))
       (:rewrite :backchain-limit-lst (0 0)
                 :corollary (implies (if (member-equal acl2::a acl2::x)
                                         (vl-defines-p acl2::x)
                                       'nil)
                                     (consp acl2::a)))))

    Theorem: vl-defines-p-of-remove-assoc

    (defthm vl-defines-p-of-remove-assoc
      (implies (vl-defines-p acl2::x)
               (vl-defines-p (remove-assoc-equal acl2::name acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-defines-p-of-put-assoc

    (defthm vl-defines-p-of-put-assoc
     (implies
      (and (vl-defines-p acl2::x))
      (iff (vl-defines-p (put-assoc-equal acl2::name acl2::val acl2::x))
           (and (stringp acl2::name)
                (vl-maybe-define-p acl2::val))))
     :rule-classes ((:rewrite)))

    Theorem: vl-defines-p-of-fast-alist-clean

    (defthm vl-defines-p-of-fast-alist-clean
      (implies (vl-defines-p acl2::x)
               (vl-defines-p (fast-alist-clean acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-defines-p-of-hons-shrink-alist

    (defthm vl-defines-p-of-hons-shrink-alist
      (implies (and (vl-defines-p acl2::x)
                    (vl-defines-p acl2::y))
               (vl-defines-p (hons-shrink-alist acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: vl-defines-p-of-hons-acons

    (defthm vl-defines-p-of-hons-acons
      (equal (vl-defines-p (hons-acons acl2::a acl2::n acl2::x))
             (and (stringp acl2::a)
                  (vl-maybe-define-p acl2::n)
                  (vl-defines-p acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-maybe-define-p-of-cdr-of-hons-assoc-equal-when-vl-defines-p

    (defthm
         vl-maybe-define-p-of-cdr-of-hons-assoc-equal-when-vl-defines-p
     (implies
       (vl-defines-p acl2::x)
       (iff (vl-maybe-define-p (cdr (hons-assoc-equal acl2::k acl2::x)))
            (or (hons-assoc-equal acl2::k acl2::x)
                (vl-maybe-define-p nil))))
     :rule-classes ((:rewrite)))

    Theorem: alistp-when-vl-defines-p-rewrite

    (defthm alistp-when-vl-defines-p-rewrite
      (implies (vl-defines-p acl2::x)
               (alistp acl2::x))
      :rule-classes ((:rewrite)))

    Theorem: alistp-when-vl-defines-p

    (defthm alistp-when-vl-defines-p
      (implies (vl-defines-p acl2::x)
               (alistp acl2::x))
      :rule-classes :tau-system)

    Theorem: vl-maybe-define-p-of-cdar-when-vl-defines-p

    (defthm vl-maybe-define-p-of-cdar-when-vl-defines-p
      (implies (vl-defines-p acl2::x)
               (iff (vl-maybe-define-p (cdar acl2::x))
                    (or (consp acl2::x)
                        (vl-maybe-define-p nil))))
      :rule-classes ((:rewrite)))

    Theorem: stringp-of-caar-when-vl-defines-p

    (defthm stringp-of-caar-when-vl-defines-p
      (implies (vl-defines-p acl2::x)
               (iff (stringp (caar acl2::x))
                    (or (consp acl2::x) (stringp nil))))
      :rule-classes ((:rewrite)))